构建乘积数组

 
 
剑指的思路:
B[i]的值可以看作下图的矩阵中每行的乘积。
下三角用连乘可以很容求得,上三角,从下向上也是连乘。
因此我们的思路就很清晰了,先算下三角中的连乘,即我们先算出B[i]中的一部分,然后倒过来按上三角中的分布规律,把另一部分也乘进去。
 
 
 
 
先乘以前面再乘以后面


class Solution {
public:
    vector<int> multiply(const vector<int>& A) {

//B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1]
//从左到右算 B[i]=A[0]*A[1]*...*A[i-1]
//从右到左算B[i]*=A[i+1]*...*A[n-1]         
    
     int n=A.size();  
     vector<int> b(n);//返回的是一样的
     if(A.empty())
      {
       return b ;
      }

        int ret=1;
        for(int i=0;i<n;i++){  //B[i]=A[0]*A[1]*...*A[i-1]
         b[i]=ret; //  算出每一个b[i]来
         ret*=A[i];
        }


       ret=1;
        for( int i=n-1;i>=0;i--)//将所有b循环一遍
        {
         b[i]=b[i]*ret;
         ret*=A[i];
            
        }
        
        return b;
        
    }
};

  

转载于:https://www.cnblogs.com/cgy1012/p/11442830.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值