剑指的思路:
B[i]的值可以看作下图的矩阵中每行的乘积。
下三角用连乘可以很容求得,上三角,从下向上也是连乘。
因此我们的思路就很清晰了,先算下三角中的连乘,即我们先算出B[i]中的一部分,然后倒过来按上三角中的分布规律,把另一部分也乘进去。
先乘以前面再乘以后面
class Solution {
public:
vector<int> multiply(const vector<int>& A) {
//B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1]
//从左到右算 B[i]=A[0]*A[1]*...*A[i-1]
//从右到左算B[i]*=A[i+1]*...*A[n-1]
int n=A.size();
vector<int> b(n);//返回的是一样的
if(A.empty())
{
return b ;
}
int ret=1;
for(int i=0;i<n;i++){ //B[i]=A[0]*A[1]*...*A[i-1]
b[i]=ret; // 算出每一个b[i]来
ret*=A[i];
}
ret=1;
for( int i=n-1;i>=0;i--)//将所有b循环一遍
{
b[i]=b[i]*ret;
ret*=A[i];
}
return b;
}
};