PID控制算法学习与Matlab仿真

本文详细解读了PID控制算法的起源,包括其在工业机器人、飞控及航天模拟中的应用。深入介绍了连续和离散系统的PID公式,探讨了比例、积分和微分的作用,并分享了调参技巧。最后,通过Matlab仿真实例展示了如何在简单系统中运用PID算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

起因

PID控制算法应该是包括工业机器人等各种行业和领域中非常常用的一种控制算法了。了解这个算法的起因是在稚晖君开发的自行车项目中见到,后来在北理工组会中了解到PID控制算法属于控制工程专业中非常基础的理论。
初步了解之后就会经常注意到这个算法,发现PID在飞控算法中非常重要,也常出现在b站分享的各种自平衡项目中。前两天又了解到著名“载人航天仿真工程软件”《坎巴拉太空计划》的MOD中也可以通过写入PID算法来对火箭姿态进行控制。可以说此算法是既实用又很酷了。

算法原理

连续系统中的PID算法公式如下
U ( t ) = k P [ e r r ( t ) + 1 T I ∫ e r r ( t ) d t + T D d [ e r r ( t ) ] d t ] = k P e r r ( t ) + k P T I ∫ e r r ( t ) d t + T D k P d [ e r r ( t ) ] d t = k P e r r ( t ) + k I ∫ e r r ( t ) d t + k D d [ e r r ( t ) ] d t U(t)=k_P\left [ err(t)+\frac{1}{T_I}\int err(t)dt+T_D\frac{d[err(t)]}{dt} \right ]\\ =k_P err(t)+\frac{k_P}{T_I}\int err(t)dt+T_D k_P\frac{d[err(t)]}{dt} \\ =k_P err(t)+k_I\int err(t)dt+k_D\frac{d[err(t)]}{dt} U(t)=kP[err(t)+TI1err(t)dt+TDdtd[err(t)]]=kP

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值