【机器学习】028_SoftMax模型Part.3_从零实现Softmax模型

一、Softmax回归实现原理回顾

· 不同于逻辑回归,Softmax回归不仅仅解决二分类问题,而是可以解决多分类问题

· 将各个可能的分类具化为概率值:

· 定义Softmax模型对于每个参数的输出:

· Softmax预测原理总结:

        ①假设数据有3(x)个特征值,4(o)个可能的输出类别,则未规范化预测为:

o_{1}=x_{1}w_{11}+x_{2}w_{21}+x_{3}w_{31}+x_{4}w_{41}+b_{1}

o_{2}=x_{1}w_{12}+x_{2}w_{22}+x_{3}w_{32}+x_{4}w_{42}+b_{2}

o_{3}=x_{1}w_{13}+x_{2}w_{23}+x_{3}w_{33}+x_{4}w_{43}+b_{3}

o=xW+b

           假设数据有d个特征值,q个输出类别,n个样本数据量,则:

           参数W为dxq矩阵,样本X为nxd矩阵,两者相乘变为nxq矩阵。

           · 意味着对n个样本数据,每个样本对应的4个类别的概率大小构成的d维向量叠加n层。

        ②得到未规范化预测值o后,要对其规范化为非负、总和为1的预测值,并将其输出。

\widehat{y}=softmax(o)

\widehat{y}=\frac{e^{o_{j}}}{\sum_{q}^{} e^{o_{q}}}

argmax(\widehat{y_{j}})=argmax(o_{j})

           Softmax()的作用是规范化预测,将预测值表示成每个类别对应的概率,取最大者作为预测

           这样,我们就拿到了n个样本对应的预测输出值Y,Y为nxq矩阵,表示n个样本对应类别预测

        ③计算损失函数(交叉熵损失)度量预测效果。

           给定n个样本数据,每个样本由特征向量x和独热标签向量y组成。

           根据极大似然估计,我们要使预测更精准,应当使对应类别的预测值更贴近于0或1。

           · 由于预测值是一个必然<1的概率,借助对数化度量其值:

           · 其中 y_{j} 是真实值,因此概率为0的类别被滤掉,只对真实概率为1的类别不断逼近

l(y,\widehat{y})=-\sum_{j=1}^{q}y_{j}log\widehat{y_{j}}

           考虑对任何未规范化的预测 o_{j} 的导数,得到:

\partial_{o_{j}}l(y,\widehat{y})=softmax(o)_{j}-y_{j}

           也就是说,导数是softmax模型计算分配的概率与实际标签概率之间的差距。

           通过这个损失函数,将会使预测值向量越来越逼近真实值向量。

二、从零实现Softmax回归

· 代码及注解如下:

import torch
from IPython import display
from d2l import torch as d2l

## 数据准备
# 定义数据迭代器批量为256,引入Fashion-MNIST数据集
batch_size = 256
# 训练集和测试集的迭代器
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# 输入的图像数据都是28x28像素的图片,但是我们需要将它拉平为一条784长度的向量
# 分类的类别有10个,因此网络输出维度设置为10
# 初始化权重参数w和偏移b,利用正态分布初始化
# ※需要定义好w的行列值,w是dxq的,由于q=10,故b为1x10的向量
# 或者,也可以将b设置为1x1,使其自行广播机制
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)
## 定义Softmax回归模型
# 首先,利用torch.exp对每个元素作指数运算
# 接下来,设置sum轴1(对每一行求和,将784个特征值对应的指数求和)
def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition      # 应用广播机制,将X_exp每一行的每个元素除以partition每一行的元素
# 矩阵中非常大或非常小的元素可能造成数值上溢或下溢

X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)

# 实现softmax回归模型,将X重设为256x784的矩阵,与x做乘积再加b
# 这样,对于一个批量大小的数据X,就可以通过softmax回归将每个X转化为10个类别的概率了
def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]

## 定义交叉熵损失
# 这里,len是元素数量而不是长度
# 这个地方借助真实值y来拿取y_hat预测值相对应类别的概率
# y是一个1xn的矩阵,对应了n个样本中每个样本属于第几个类别
# y_hat是一个nxq的矩阵,对应了n个样本中每个样本对每个类别的概率预测值
# range(len(y_hat))遍历y_hat的每一行,每次拿出一行来与y对应的那一个样本的类别作对应
# 这样,就得到该样本对y对应的类别所预测的概率,以这个概率的负对数做损失函数
def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y)

## 将预测类别与真实值y作比较
# 分类精度数预测正确数与预测总数之比
# 如果y_hat是一个多行多列(多样本、多类别)的矩阵,则将每行中最大元素的索引作为其每行预测值
# ※注意,记得将y_hat转化为y的数据类型使其一致
# cmp是一个仅包含0和1的张量,有等同于样本数的元素数
# 最后求和,就得到了预测正确的样本个数
def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

accuracy(y_hat, y) / len(y)

## 计算在任意指定数据集上模型的精度
class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]
# 用于计算模型的精度。它接受两个参数,一个是模型(net),另一个是数据迭代器(data_iter)
# - 如果net是torch.nn.Module的实例,那么将其设置为评估模式。
# - 创建一个Accumulator实例metric,用于存储正确预测的数量和总数量。
# - 在不需要计算梯度的情况下(with torch.no_grad()),遍历数据迭代器中的每一批数据(X, y)
# - 对每一批数据,计算模型的预测精度,并将其添加到metric中
# - 最后,返回正确预测的数量除以总数量,得到模型的精度
def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

# updater是更新模型参数的常用函数,接收批量大小作为参数,可以是d2l.sgd函数(随机梯度下降)也可以是框架内置优化函数
## 训练模型
def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

# 定义一个在动画中绘制图表的程序类
class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

# 接下来我们实现一个训练函数, 它会在train_iter访问到的训练数据集上训练一个模型net。
# 该训练函数将会运行多个迭代周期(由num_epochs指定)
# 在每个迭代周期结束时,利用test_iter访问到的测试数据集对模型进行评估
# 我们将利用Animator类来可视化训练进度
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值