POJ 1509 Glass Beads【字符串最小表示法】

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Yukizzz/article/details/51348627

题目链接:

http://poj.org/problem?id=1509

题意:

求循环字符串的最小表示。

分析:

浅析“最小表示法”思想在字符串循环同构问题中的应用
判断两字符串是否是循环同构的过程就是在求字符串的最小表示,即如果两个字符串是循环同构的,那么当前两指针i=M(s1)j=M(s2) 的时候,一定可以得到u[ii+s11] = w[jj+s21]
所以我们把给定序列看成两个循环同构的字符串,然后求一下最小表示就好了。

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define pr(x) cout << #x << ": " << x << "  "
#define pl(x) cout << #x << ": " << x << endl;
const int maxn = 20000 + 5;
int n;
char a[maxn];
int solve()
{
    int i = 0, j = 1, k;
    while(i < n && j < n)
    {
        for(k = 0; k < n; k++){
            if(a[(i + k) % n] != a[(j + k) % n]){
                break;
            }
        }
        if(k == n) break;
        if(a[(i + k) % n] > a[(j + k) % n])  i = i + k + 1;
        else j = j + k + 1;
        if(i == j) j = i + 1;
    }
    return i < j ? i : j;
}
int main()
{
    int t;scanf("%d", &t);
    while(t--){
        scanf("%s", a);
        n = strlen(a);
        printf("%d\n", solve() + 1);
    }
    return 0;
}

最小表示法思想:

当某两个对象有多种表达形式,且需要判断它们在某种变化规则下是否能够达到一个相同的形式时,可以将它们都按一定规则变化成其所有表达形式中的最小者,然后只需要比较两个“最小者”是否相等即可。

阅读更多
换一批

Glass Beads

05-01

Once upon a time there was a famous actress. As you may expect, she played mostly Antique Comedies most of all. All the people loved her. But she was not interested in the crowds. Her big hobby were beads of any kind. Many bead makers were working for her and they manufactured new necklaces and bracelets every day. One day she called her main Inspector of Bead Makers (IBM) and told him she wanted a very long and special necklace.nThe necklace should be made of glass beads of different sizes connected to each other but without any thread running through the beads, so that means the beads can be disconnected at any point. The actress chose the succession of beads she wants to have and the IBM promised to make the necklace. But then he realized a problem. The joint between two neighbouring beads is not very robust so it is possible that the necklace will get torn by its own weight. The situation becomes even worse when the necklace is disjoined. Moreover, the point of disconnection is very important. If there are small beads at the beginning, the possibility of tearing is much higher than if there were large beads. IBM wants to test the robustness of a necklace so he needs a program that will be able to determine the worst possible point of disjoining the beads.nnThe description of the necklace is a string A = a1a2 ... am specifying sizes of the particular beads, where the last character am is considered to precede character a1 in circular fashion.nnThe disjoint point i is said to be worse than the disjoint point j if and only if the string aiai+1 ... ana1 ... ai-1 is lexicografically smaller than the string ajaj+1 ... ana1 ... aj-1. String a1a2 ... an is lexicografically smaller than the string b1b2 ... bn if and only if there exists an integer i, i <= n, so that aj=bj, for each j, 1 <= j < i and ai < bi.nnnInputnnThe input consists of N cases. The first line of the input contains only positive integer N. Then follow the cases. Each case consists of exactly one line containing necklace description. Maximal length of each description is 10000 characters. Each bead is represented by a lower-case character of the english alphabet (a--z), where a < b ... z.nnnOutputnnFor each case, print exactly one line containing only one integer -- number of the bead which is the first at the worst possible disjoining, i.e. such i, that the string A[i] is lexicographically smallest among all the n possible disjoinings of a necklace. If there are more than one solution, print the one with the lowest i.nnnSample Inputnn4nhelloworldnamandamandandontcallmebfunaaabaaannnSample Outputnn10n11n6n5

没有更多推荐了,返回首页