融合SaaS平台,加速大中型企业HR数字化?

640?wx_fmt=jpeg

来源/ 中国软件网(ID:Hapiweb-soft6)
作者/ 刘学习    编辑/ Emon

2019年,HCM SaaS已经成为大中型企业实现人力资本管理数字化转型的新常态。大中型企业也已成为中国HCM SaaS或者HR SaaS增长的一个热点。不同市场调查机构的数据几乎都证明了这一态势。

10月25日,在中国人力资源开发研究会年会暨中国人才发展论坛上,浪潮云ERP重要业务——面向大中型企业HR SaaS市场的浪潮HCM Cloud在业界首次推出融合SaaS平台,实现大型企业管控共性需求与下属单位敏捷个性化需求的平衡,助力企业管控集中、业务敏捷。

那么融合SaaS平台是什么?能为大中型企业HR数字化转型创造什么价值呢?

 

1


大中型企业更欢迎多云战略

应用云化,采用云服务来加速企业数字化转型是必然的方向,且已经成为各行各业的共识。

对于业务多元化、全球化的大中型企业,由于IT系统复杂、耦合度高、分布地域广等特性,单一的云服务商往往很难满足其全部需求。而对于原生于云的大中型互联网企业,业务的安全性、可靠性同样重要,越来越多的用户正在将互联网服务视为与水电、金融一样的生活必需品,无法容忍出现问题。因此,将鸡蛋分散放在不同篮子的“多云”服务模式,或将成为企业的“必修课程”。

正是基于这样的需求,为保证集团管控与敏捷灵活性,浪潮HCM Cloud在业内首推融合SaaS平台。浪潮HCM Cloud事业部总经理隋同建说,融合SaaS平台基于浪潮HCM Cloud服务大型央企、国企的业务沉淀以及十几年技术架构的积累,目标是实现大型企业管控共性需求与下属单位敏捷个性化需求的平衡,助力企业管控集中、业务敏捷,满足企业多云的基本需求。

具体而言,融合SaaS平台为SaaS系统敏捷部署、集团多租户管控而生。基于纯云原生的容器技术、符合OpenStack设计标准,运用Kubernetes负载均衡和资源管理的柔性容器编排服务,随时按需动态扩展硬件资源,无闪断的自动更新,解决了SaaS系统私有化部署和运营的问题,能够按实际需要任意组合单租户、多租户的部署,充分使用云平台的服务资源和优势,为客户提供多种灵活的公有、私有以及混合部署的模式。

2


PaaS+SaaS实现个性化与专业化需求

在中国,针对大中型企业的HCMSaaS有望以全SaaS模式抢占新赛道,以云原生技术,助力企业人力资本管理数字化,支持企业数字化转型,已成为企业重要的发展战略。包括浪潮HCM Cloud、北森、用友DHR等都推出针对大中型企业的HCM SaaS服务。

浪潮HCM Cloud用户定位于大中型企业,通过其PaaS平台满足大中型客户定制化、个性化的需求,同时不影响其SaaS通用化的更新与发展。

隋同建介绍,浪潮HCMCloud用PaaS平台平衡SaaS与企业需求个性化的矛盾,充分融入企业管理特色,建设属于企业独一无二的人力资源平台。

同时,浪潮云原生的专业SaaS人力资源服务平台——HCM Cloud,具备专业、智能、柔性、实时四大特性,采用云原生架构,面向生态搭建人力资源管理体系,以人事服务云、薪资福利云、时间管理云、培训服务云、社交化招聘云、绩效管理云、全员服务云七朵云,为全员提供招聘、人事、薪资、考勤、绩效、培训及自助服务等多种云应用,全方位打造“人才闭环”和最佳员工体验。

3


用标准化HCM SaaS落地数字化+服务化

隋同建认为,当前,数字化成为人力资源转型必由之路,数字化+服务化正颠覆传统人力资源管理模式。同时,企业人力资源管理迎来三大变化:从业务需求驱动,到业务数字化驱动;从人力资源效率导向,到业务服务驱动导向;充分利用人工智能,提升数字化应用价值。

隋同建在演讲时指出,以信息标准化与流程标准化为前提的一体化管控平台是人力资源信息化的首要目标,在数字化平台建设中,应导入以价值为导向的端到端流程,提升协作质量与业务服务品质。

隋同建说,当前,人力资源共享中心(HRSSC)建设正成为人力资源转型的重要抓手,应以“人力业务一体化”为驱动力,充分集成内部业务系统,促进业务板块协同,充分重视新技术的引入,以技术驱动业务转型,以此更好的协助企业完成人力资源价值再造。

IDC的调研发现,越来越的企业已经意识到SaaS的重要性,希望未来采用SaaS的方式进行人力资本管理战略升级。而更低的成本投入、更短的安装时间、更便捷的产品优化等优点,符合企业敏捷、创新以及节约成本的需求,越来越多的企业在人力资源管理方面会采用SaaS的模式部署。

浪潮HCM Cloud全SaaS化产品与服务开启云端专业人力管理时代,助力大中型企业人力资源转型。目前,浪潮HCM Cloud已助力中信集团、中国铝业、中国能建、中车四方、百果园等企业的人力资源管理转型升级。

隋同建说,当前,人力资源共享中心(HRSSC)建设正成为人力资源转型的重要抓手,应以“人力业务一体化”为驱动力,充分集成内部业务系统,促进业务板块协同,充分重视新技术的引入,以技术驱动业务转型,以此更好的协助企业完成人力资源价值再造。

-END-


640?wx_fmt=png

推荐阅读

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
GeoPandas是一个开源的Python库,旨在简化地理空间数据的处理和分析。它结合了Pandas和Shapely的能力,为Python用户提供了一个强大而灵活的工具来处理地理空间数据。以下是关于GeoPandas的详细介绍: 一、GeoPandas的基本概念 1. 定义 GeoPandas是建立在Pandas和Shapely之上的一个Python库,用于处理和分析地理空间数据。 它扩展了Pandas的DataFrame和Series数据结构,允许在其中存储和操作地理空间几何图形。 2. 核心数据结构 GeoDataFrame:GeoPandas的核心数据结构,是Pandas DataFrame的扩展。它包含一个或多个列,其中至少一列是几何列(geometry column),用于存储地理空间几何图形(如点、线、多边形等)。 GeoSeries:GeoPandas中的另一个重要数据结构,类似于Pandas的Series,但用于存储几何图形序列。 二、GeoPandas的功能特性 1. 读取和写入多种地理空间数据格式 GeoPandas支持读取和写入多种常见的地理空间数据格式,包括Shapefile、GeoJSON、PostGIS、KML等。这使得用户可以轻松地从各种数据源中加载地理空间数据,并将处理后的数据保存为所需的格式。 2. 地理空间几何图形的创建、编辑和分析 GeoPandas允许用户创建、编辑和分析地理空间几何图形,包括点、线、多边形等。它提供了丰富的空间操作函数,如缓冲区分析、交集、并集、差集等,使得用户可以方便地进行地理空间数据分析。 3. 数据可视化 GeoPandas内置了数据可视化功能,可以绘制地理空间数据的地图。用户可以使用matplotlib等库来进一步定制地图的样式和布局。 4. 空间连接和空间索引 GeoPandas支持空间连接操作,可以将两个GeoDataFrame按照空间关系(如相交、包含等)进行连接。此外,它还支持空间索引,可以提高地理空间数据查询的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值