人工智能技术飞速发展的今天,掌握大型语言模型(LLM)已成为许多AI从业者和学习者的必修课。近期,一位AI从业者在GitHub上分享的14天学习路线图吸引了广泛关注,其学习笔记已收获超过700颗星,成为新手学习LLM的重要参考。这种集中而高效的学习方法,不仅对准备面试、寻找工作的求职者大有裨益,也为自主创业的开发者提供了一条快速入门的捷径。
LLM知识的复杂性让许多新手感到望而却步,繁琐的论文和快速更新的技术进展让人无从下手。然而,这位大佬的学习笔记详细概述了LLM的核心概念,例如:token嵌入、Transformer架构、自注意力机制、多头注意力等。这些概念是理解和应用LLM的基石。
学习路线可以大致分为以下几个阶段
1、数学基础 :
线性代数 :矩阵运算、向量空间、特征值与特征向量等。
概率统计 :随机变量、概率分布、贝叶斯定理等。
微积分 :梯度、偏导数、积分等3。
2、编程基础 :
Python :掌握基本的数据结构、控制流以及函数式编程,熟悉NumPy、Matplotlib等常用库3。
3、深度学习框架 :
PyTorch :掌握深度学习的核心理论,包括神经网络的基本原理和训练方法,熟练运用PyTorch构建和训练简单的深度学习模型4。
4、大模型核心知识 :
Transformer和注意力机制 :深入理解Transformer架构,熟悉其代码实现,能够训练和微调预训练大模型(如Bert、GPT等)。
5、大模型扩展和性能优化 :
高效训练方法 :掌握大模型在不同硬件上的高效训练方法。
推理速度优化 :学会优化大模型的推理速度,降低内存占用。
分布式训练和量化技术 :理解大模型的分布式训练和量化技术4。
6、实战项目与案例分析 :
提示工程 :从基础到进阶,掌握Prompt提示工程1。
RAG与Embedding :学习RAG检索增强生成技术6。
多Agent系统 :了解并实现多Agent系统,如AutoGPT、MetaGPT等1。
模型微调与私有化部署 :学习如何对大模型进行微调并私有化部署5。
前沿技术探索 :
持续学习 :关注大模型领域的前沿技术和未来趋势,保持持续学习的习惯2。
学习建议:
理论与实践相结合 :在学习理论知识的同时,多参与实战项目,将理论应用于实际,提高解决问题的能力2。
选择合适的资源 :利用优质的书籍、在线课程和实战项目,全面提升自己的技能。
保持耐心和毅力 :大模型领域发展迅速,需要不断学习和实践,保持耐心和毅力,持续进步。
通过以上阶段的学习,你将能够全面掌握大模型的技术和应用。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓