(质因数分解+二分图)LightOJ1356Prime Independence

LightOJ1356Prime Independence

题意:

给你 n n n个数,你选出最多的一个集合满足不存在其中任意两数 a , b a,b a,b满足 a = k × b , k a=k\times b,k a=k×b,k是一个质数。

思路:

最大独立点集 = n − =n- =n二分图最大匹配数。
我们可以通过唯一分解定理判断数字 x x x的因子个数,可以知道如果因子个数同为奇数或者偶数,那么它们肯定不可能匹配。所以按照因数个数的奇偶将图分成二分图,进行连边。注意我们在判断两个数之间是否需要连边的时候,应该是记录一个数的因子进行除法判断得到的数是否存在,降低复杂度。

代码:

#include<bits/stdc++.h>
#define pii pair<int,int>
#define ll long long
#define cl(x,y) memset(x,y,sizeof(x))
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
const int N=1e6+210;
const int M=4e4+210;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int minn=0xc0c0c0c0;
using namespace std;
struct edge
{
	int u,v,w;
}e[N<<1];
int len=1,head[M]={0};
int dep[M];//深度 
void add(int u,int v,int w)
{
	e[++len]={head[u],v,w};
	head[u]=len;
}
void inc(int u,int v,int w)
{
	add(u,v,w);
	add(v,u,0);
} 
int dfs(int u,int f,int t)
{
	int ans=0,i;
	if(u==t)
		return f;
	for(i=head[u];i && f;i=e[i].u)
	{
		int v=e[i].v,w=e[i].w;
		if(dep[v]==dep[u]+1 && w)//符合深度关系且能流 
		{
			int sum=dfs(v,min(f,w),t);
			e[i].w-=sum;
			e[i^1].w+=sum;
			f-=sum;
			ans+=sum;
		}	
	}
	if(!ans)
		dep[u]=-2;
	return ans;
}
int bfs(int s,int t)
{
	queue<int> q;
	int i;
	for(i=s;i<=t;i++)
		dep[i]=0;
	dep[s]=1;//源点深度为1
	q.push(s);
	while(!q.empty())
	{
		int u=q.front(),i;
		q.pop();
		for(i=head[u];i;i=e[i].u)
		{
			int v=e[i].v,w=e[i].w;
			if(w && !dep[v])//有深度且能流 
			{
				dep[v]=dep[u]+1;
				q.push(v); 
			}
		}
	}
	return dep[t];
}
int dinic(int s,int t)
{
	int ans=0;
	while(bfs(s,t))
		ans+=dfs(s,inf,t);
	return ans;
}
const int MAX=5e5+5;
const int MAXN=5e5+10;
bool ok[N];
int prim[N];
int pos=0;
void init()
{
    for(int i=2;i<MAXN;i++)
    {
        if(ok[i]==0)
            prim[++pos]=i;
        for(int j=1;j<=pos;j++)
        {
            if(i*prim[j]>MAXN)
                break;//已经超出了你要判断的范围
            ok[i*prim[j]]=1;//prim[j]是素数,那么他的倍数必定是合数
            if(i%prim[j]==0)
                break;//i是某个素数的倍数,之前已经判断过了,所以直接跳出
        }
    }
}
int a[M];
int main()
{
	int T,cas=1;
	scanf("%d",&T);
	init();
	while(T--)
	{
		int n,i,j;
		scanf("%d",&n);
		for(i=1;i<=n;i++)
			scanf("%d",&a[i]);
		//cl(p,0);
		map<int,int> p;
		for(i=1;i<=n;i++)
			p[a[i]]=i;
		int s=0,t=n+1;
		len=1;
		for(i=s;i<=t;i++)
			head[i]=0;
		for(i=1;i<=n;i++)
		{
			int x=a[i],tot=0;
			int pr[1100],cnt=0;
			for(j=1;prim[j]*prim[j]<=x;j++)
			{
				if(x%prim[j]==0)
				{
					pr[++cnt]=prim[j];
					while(x%prim[j]==0)
					{
						x/=prim[j];
						tot++;
					}
				}
				
			}
			if(x>1)
			{
				tot++;
				pr[++cnt]=x;
			}		
			if(tot&1)
				inc(s,i,1);
			else
				inc(i,t,1);
			for(j=1;j<=cnt;j++)
			{
				int w=a[i]/pr[j];
				if(p[w])
					if(tot&1)
						inc(i,p[w],1);
					else
						inc(p[w],i,1);
			}		
		}
		printf("Case %d: %d\n",cas++,n-dinic(s,t));
	}
	return 0;
}

已标记关键词 清除标记
相关推荐
课程简介: 历经半个多月的时间,Debug亲自撸的 “企业员工角色权限管理平台” 终于完成了。正如字面意思,本课程讲解的是一个真正意义上的、企业级的项目实战,主要介绍了企业级应用系统中后端应用权限的管理,其中主要涵盖了六大核心业务模块、十几张数据库表。 其中的核心业务模块主要包括用户模块、部门模块、岗位模块、角色模块、菜单模块和系统日志模块;与此同时,Debug还亲自撸了额外的附属模块,包括字典管理模块、商品分类模块以及考勤管理模块等等,主要是为了更好地巩固相应的技术栈以及企业应用系统业务模块的开发流程! 核心技术栈列表: 值得介绍的是,本课程在技术栈层面涵盖了前端和后端的大部分常用技术,包括Spring Boot、Spring MVC、Mybatis、Mybatis-Plus、Shiro(身份认证与资源授权跟会话等等)、Spring AOP、防止XSS攻击、防止SQL注入攻击、过滤器Filter、验证码Kaptcha、热部署插件Devtools、POI、Vue、LayUI、ElementUI、JQuery、HTML、Bootstrap、Freemarker、一键打包部署运行工具Wagon等等,如下所示: 课程内容与收益: 总的来说,本课程是一门具有很强实践性质的“项目实战”课程,即“企业应用员工角色权限管理平台”,主要介绍了当前企业级应用系统中员工、部门、岗位、角色、权限、菜单以及其他实体模块的管理;其中,还重点讲解了如何基于Shiro的资源授权实现员工-角色-操作权限、员工-角色-数据权限的管理;在课程的最后,还介绍了如何实现一键打包上传部署运行项目等等。如下所示为本权限管理平台的数据库设计: 以下为项目整体的运行效果截: 值得一提的是,在本课程中,Debug也向各位小伙伴介绍了如何在企业级应用系统业务模块的开发中,前端到后端再到数据库,最后再到服务器的上线部署运行等流程,如下所示:
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页