影响Spark输出RDD分区的操作函数

1. 会影响到Spark输出RDD分区(partitioner)的操作

cogroup, groupWith, join, leftOuterJoin, rightOuterJoin, groupByKey, reduceByKey, combineByKey, partitionBy, sort, mapValues(如果父RDD存在partitioner), flatMapValues(如果父RDD存在partitioner), 和 filter (如果父RDD存在partitioner)。


2. 不会影响输出RDDpartitioner

其他的transform操作不会影响到输出RDD的partitioner,一般来说是None,也就是没有partitioner。

下面举个例子进行说明:

scala> val pairs = sc.parallelize(List((1, 1), (2, 2), (3, 3)))
    pairs: org.apache.spark.rdd.RDD[(Int, Int)] = 
    ParallelCollectionRDD[4] at parallelize at <console>:12

scala> val a = sc.parallelize(List(2,51,2,7,3))
    a: org.apache.spark.rdd.RDD[Int] = 
    ParallelCollectionRDD[5] at parallelize at <console>:12

scala> val a = sc.parallelize(List(2,51,2))
    a: org.apache.spark.rdd.RDD[Int] = 
    ParallelCollectionRDD[6] at parallelize at <console>:12

scala> val b = sc.parallelize(List(3,1,4))
    b: org.apache.spark.rdd.RDD[Int] =
    ParallelCollectionRDD[7] at parallelize at <console>:12

scala> val c = a.zip(b)
    c: org.apache.spark.rdd.RDD[(Int, Int)] = 
    ZippedPartitionsRDD2[8] at zip at <console>:16

scala> val result = pairs.join(c)
    result: org.apache.spark.rdd.RDD[(Int, (Int, Int))] = 
    FlatMappedValuesRDD[11] at join at <console>:20

scala> result.partitioner
    res6: Option[org.apache.spark.Partitioner] = Some(org.apache.spark.HashPartitioner@2)

大家可以看到输出来的RDD result分区变成了HashPartitioner,因为join中的两个分区都没有设置分区,所以默认用到了HashPartitioner,可以看join的实现:

def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = {
    join(other, defaultPartitioner(self, other))
}

def defaultPartitioner(rdd: RDD[_], others: RDD[_]*): Partitioner = {
    val bySize = (Seq(rdd) ++ others).sortBy(_.partitions.size).reverse
    for (r <- bySize if r.partitioner.isDefined) {
      return r.partitioner.get
    }
    if (rdd.context.conf.contains("spark.default.parallelism")) {
      new HashPartitioner(rdd.context.defaultParallelism)
    } else {
      new HashPartitioner(bySize.head.partitions.size)
    }
}

defaultPartitioner函数就确定了结果RDD的分区。从上面的实现可以看到,
  1、join的两个RDD如果都没有partitioner,那么join结果RDD将使用HashPartitioner
  2、如果两个RDD中其中有一个有partitioner,那么join结果RDD将使用那个父RDD的partitioner
  3、如果两个RDD都有partitioner,那么join结果RDD就使用调用join的那个RDD的partitioner
  


【完】

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ZCF1002797280/article/details/51289590
个人分类: Spark && Hadoop
上一篇fold/foldLeft/foldRight区别和联系
下一篇Zipf,Power-laws,Pareto分布
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭