Spark进行wordcount防止数据倾斜

重组元组中的key,变为key_Random,再进行聚合。然后进行map以_切割,再重新聚合。

 sc.textFile("hdfs://s201/user/word.txt").flatMap(_.split(" ")).map((_,1)).map(t=>{import scala.util.Random;val par = Random.nextInt(10);(t._1+"_"+par,1)}).reduceByKey(_+_).map(t=>{val arr = t._1.split("_");(arr(0),t._2)}).reduceByKey(_+_).collect

WEBUI界面:以聚合之前的shuffle分为3个阶段。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值