192、Spark 2.0之Dataset开发详解-typed操作:map、flatMap、mapPartitions

map:将数据集中的每条数据都做一个映射,返回一条新数据
flatMap:数据集中的每条数据都可以返回多条数据
mapPartitions:一次性对一个partition中的数据进行处理

代码

object TypedOperation {

  case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Long)

  case class Department(id: Long, name: String)

  def main(args: Array[String]): Unit = {
    val sparkSession = SparkSession
      .builder()
      .appName("BasicOperation")
      .master("local")
      .getOrCreate()

    import sparkSession.implicits._
    import org.apache.spark.sql.functions._

    val employeePath = this.getClass.getClassLoader.getResource("employee.json").getPath
    val departmentPath = this.getClass.getClassLoader.getResource("department.json").getPath

    val employeeDF = sparkSession.read.json(employeePath)
    val departmentDF = sparkSession.read.json(departmentPath)

    val employeeDS = employeeDF.as[Employee]
    val departmentDS = departmentDF.as[Department]

    employeeDS.map { employee => (employee.name, employee.salary + 1000) }.show()

    departmentDS.flatMap {
      department => Seq(Department(department.id + 1, department.name + "_1"), Department(department.id + 2, department.name + "_2"))
    }.show()
    
    employeeDS.mapPartitions {
      employees => {
        val result = scala.collection.mutable.ArrayBuffer[(String, Long)]()
        while (employees.hasNext) {
          var emp = employees.next()
          result += ((emp.name, emp.salary + 1000))
        }
        result.iterator
      }
    }.show()
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值