本论文深入研究并实现了一种基于YOLOV8深度学习模型的医学影像骨折检测与诊断系统,旨在为医学影像中的骨折检测提供高效且准确的自动化解决方案。随着医疗影像技术的快速发展,临床医生需要从大量复杂的医学图像中精确、快速地识别病灶区域,特别是骨折区域的检测至关重要。传统的人工检查方法不仅耗时费力,而且容易受限于主观经验,导致误诊或漏诊的风险。因此,基于深度学习的自动化骨折检测系统应运而生,能够为医生提供智能化的辅助诊断工具,提升诊断效率与准确性。
本系统采用YOLOV8(You Only Look Once Version 8)作为核心检测模型,YOLO系列模型以其实时性和高效性著称,适用于检测医学影像中的目标,如骨折部位。为了提升用户体验,系统结合了PyQt5开发框架,构建了直观、易操作的用户界面。医生和用户可以通过该界面导入医学影像数据,系统会自动进行骨折区域的检测,并将检测结果以图形化的方式展示在用户界面上,便于医生快速做出诊断决策。
在数据准备方面,系统使用了一个经过标准化和预处理的医学影像数据集,包含了多种骨折类型的影像。通过对该数据集进行YOLOV8模型的训练,系统能够学习和识别不同骨折区域的特征,实现高精度的自动检测。为了验证系统的有效性,进行了大量实验测试,结果表明,基于YOLOV8的骨折检测系统在识别骨折区域时表现出较高的准确率,并且具备较好的实时性,能够迅速处理输入的影像并提供检测结果。这不仅减轻了医生的工作负担,还减少了主观误差带来的诊断风险。
算法流程

项目数据
通过搜集关于数据集为各种各样的骨折相关图像,并使用Labelimg标注工具对每张图片进行标注,分1个检测类别,分别是Fracture表示”骨折”。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
![]()
结束后,在cmd中输入labelimg
![]()
初识labelimg

打开后,我们自己设置一下
在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xw

最低0.47元/天 解锁文章
1823

被折叠的 条评论
为什么被折叠?



