大数据技术与应用-D1

大数据技术与应用-D1

  • 考核点
  • 平台搭建(Hadoop+spark)
  • 数据采集(爬虫-request库)
  • 数据清洗与分析
  • 数据展示
  • 写报告

平台搭建

Hadoop生态圈

核心设计HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。

  • 伪分布:一台单机上运行,但用不同的进程模仿分布式运行中的各类结点。没有所谓的在多台机器上进行真正的分布式计算,故称为"伪分布式"。

  • 全分布:由3个及以上的实体机或者虚拟机组件的机群。

  • HA架构(High Available双机集群系统)指高可用性集群,是保证业务连续性的有效解决方案,一般有两个或两个以上的节点,且分为活动节点及备用节点。

组件安装与配置(hive hbase spark)

  • Hive:基于Hadoop的一个数据仓库工具,可以将结构化的数据文件(或者非结构化的数据)映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。

  • HBase:nosql数据库,和mongodb类似。高可靠性、高性能、面向列、可伸缩的分布式存储系统。

  • Spark:Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。与 Hadoop 相似的开源集群计算环境,不同:Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

三大组件

  • hdfs(Hadoop Distributed File System)分布式文件系统

    底部-存储 Hadoop 集群中所有存储节点上的文件

    适合运行在通用硬件(commodity hardware)上的分布式文件系统。

  • MapReduce

    上一层-该引擎由 JobTrackers 和 TaskTrackers 组成

    概念"Map(映射)“和"Reduce(归约)”,和它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。

  • yarn(Yet Another Resource Negotiator)

    另一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。

数据采集

[完型填空]

网络爬虫:Request,lxml,scrapy

  • requests:requests 是用Python语言编写,基于自带库urllib,采用 Apache2 Licensed 开源协议的 HTTP 库。它比 urllib 更加方便

  • lxml:XPath 是一门在 XML 文档中查找信息的语言。XPath 可用来在 XML 文档中对元素和属性进行遍历。对应插件名为lxml

  • scrapy:Python开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试

数据清洗与分析

MapReduce(大规模数据集的并行运算)

语言:Java

spark(基于MapReduce算法实现的分布式计算)

语言scala(面向对象 函数式编程语言 下一代Java)

hive(HQL)数据库仓库工具

数据展示

[完型填空]

可视化

MySQL

Flask(python轻量级Web框架)

Jinja(基于python的模板引擎,沙箱执行模式,模板的每个部分)

ECharts(使用JavaScript实现的开源可视化库)

前端:JavaScript

平台搭建

环境:VMware

大数据集群操作系统:CentOS 7 64位

创建虚拟机

【创建新的虚拟机】-【典型】

【安装客户机操作】:选择.iso镜像文件(下载镜像文件)[https://msdn.itellyou.cn/]

【命名虚拟机】:设置虚拟机名称及位置

【磁盘大小】:20GB-拆分成多个文件(方便,省内存)

【自定义硬件】:2GB=2048MB

(计算:Master主人1台1-2G;slave2台1-2G;Windows-2G=8G)

安装CentOS 7.

【选择语言】:中文-简体中文中国(爱啥啥)-[继续C]

【安装信息摘要】:有!的地方,点击进入后,左上角【完成】。软件选择:最小安装-命令行。【GNOME桌面】图形桌面

shutdown -h now#关机
shutdown -r now#重启
useradd 用户名#创建用户
passwd 用户名#设置密码
userdel -r 用户名#删除用户

GNOME桌面配置

  • 接受安装许可:点击进入
    • 我同意许可协议(A)-完成(D)-完成配置(F)
  • 欢迎/输入/隐私-(选你所爱)-前进(N)
  • 时区:上海,上海,中国
  • 连接您的在线账号-跳过(S)
  • 关于您:设置全名和用户名
  • 设置密码:混合使用字母,数字和标点

一切就绪,开始使用吧!

配置IP-连接网络

  • VMware操作:

    • 【编辑(E)】-【虚拟网络编辑器(N)】

    • 【更改设置©】

    • VMnet8|NAT模式

      子网IP:192.168.66.0|子网掩码:255.255.255.0

      [NAT设置(S)]网管IP:192.168.66.2

      这里的66爱啥啥,后面统一就行

  • 虚拟机操作:

    • 右上角<img src="C:\Users\Mac\Desktop\大数据技能\开关.png" =30x30 alt="开关" style="zoom:25%;"/>,再点击设置工具图标(扳手和一字批交叉)

    • 【网络】-【有线】-<img src="C:\Users\Mac\Desktop\大数据技能\设置.png"=30x30 alt="设置" style="zoom:25%;" />设置-IPv4-手动[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pqMikYG6-1610654132942)(C:\Users\Mac\Desktop\大数据技能\IPv4设置.png)]

    • 有线设为打开状态

      [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SNLuFJzG-1610654132945)(C:\Users\Mac\Desktop\大数据技能\IP有线打开.png)]

    • 这时候用物理机ping 192.168.66.100是可以ping通的

    • 可以ping通了也就可以用xshell等等的原程桌面了

操作小练习

用户创建

进入管理员root,创建用户hadoop,设置hadoop用户密码

su -用户和Shell环境一起切换成root身份,符号从$变为#
useradd 用户名创建用户
passwd 用户名设置密码
userdel -r 用户名删除用户

[zyj@localhost ~]$ su -
密码:GNOME桌面设置时的密码
[root@localhost ~]# passwd hadoop
passwd:未知的用户名 hadoop。
[root@localhost ~]# useradd hadoop
[root@localhost ~]# passwd hadoop
更改用户 hadoop 的密码 。
新的 密码:123456
无效的密码: 密码少于 8 个字符
重新输入新的 密码:123456
passwd:所有的身份验证令牌已经成功更新。

修改sudo配置文件

  • vim /etc/sudoers打开sudo的配置文件

插入一下内容,给hadoop配置免密sudo

root    ALL=(ALL)       ALL
hadoop    ALL=(ALL)       NOPASSWD:ALL
  • 文本操作
命令解析
i进入编辑文本模式
Esc退出编辑文本模式
:w保存当前修改
:q不保存退出vi
:wq保存当前修改名退出vi

若出现:已设定选项 ‘readonly’ (请加 ! 强制执行)

在后面加入!即可,例如:wq!

  • 编辑时行间跳转

跳转到文件的首行:普通模式下 gg

跳转到文件的尾行:普通模式下 G

跳转到指定行:普通模式100gg或者100G|命令模式下跳转到指定行::100

跳转到文件的50%:普通模式50%

查找关键字:命令模式/查找内容,输入n向后查找,输入N向前查找

创建文件夹,修改属主

mkdir -p /tmp/dir1/dir2创建一个目录树|mkdir dir1创建dir1目录|mkdir dir1 dir2同时创建两个目录

ls查看目录|ls -l显示详细信息|ls -a显示隐藏文件|ls -lrt按时间显示文件,l详细列表,r反向排序,t时间排序

chown修改属主change owner|chown -R 用户名:组名 ./|chown -R hadoop:hadoop /opt/apps|chown :mail

[root@localhost ~]# mkdir -p /opt/apps
[root@localhost ~]# ls
anaconda-ks.cfg  initial-setup-ks.cfg
[root@localhost ~]# ls -l /opt/apps
总用量 0
[root@localhost ~]# chown -R hadoop:hadoop /opt/apps
[root@localhost ~]# ll
总用量 8
-rw-------. 1 root root 1587 1月  15 02:50 anaconda-ks.cfg
-rw-r--r--. 1 root root 1635 1月  15 02:55 initial-setup-ks.cfg

安装JDK

root目录下导入jdk-8u171-linux-x64.tar.gz文件,此文件适用于UNIX系统

题外话

压缩命令:tar -zcvf 压缩文件名 .tar.gz 被压缩文件名

解压命令:tar -zxvf 压缩文件名.tar.gz

  • 安装lrzszsudo yum -y install lrzsz。rz上传或直接拖动,sz 要下的文件回车。lrzsz是一个unix通信套件提供的X,Y,和ZModem文件传输协议,可以用在windows与linux 系统之间的文件传输,体积小速度快,可替代ftp。
  • 移动mv jdk-8u171-linux-x64.tar.gz /opt/apps
[root@localhost ~]# sudo yum install lrzsz
已加载插件:fastestmirror, langpacks
Loading mirror speeds from cached hostfile
 * base: mirrors.163.com
 * extras: mirrors.aliyun.com
 * updates: mirrors.aliyun.com
base                                                     | 3.6 kB     00:00     
extras                                                   | 2.9 kB     00:00     
updates                                                  | 2.9 kB     00:00     
(1/4): extras/7/x86_64/primary_db                          | 222 kB   00:00     
(2/4): base/7/x86_64/group_gz                              | 153 kB   00:00     
(3/4): base/7/x86_64/primary_db                            | 6.1 MB   00:01     
(4/4): updates/7/x86_64/primary_db                         | 4.7 MB   00:01     
软件包 lrzsz-0.12.20-36.el7.x86_64 已安装并且是最新版本
无须任何处理
[root@localhost ~]# mv jdk-8u171-linux-x64.tar.gz /opt/apps

xshell远程主机

xshell下载地址

连接虚拟机

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2zuhLuqS-1610654132947)(C:\Users\Mac\Desktop\大数据技能\xshell连接.png)]

连接后输入命令即可使用

【Ctrl+Alt+F】文件传输【XFTP】

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页