随机变量及其分布

1 随机变量及其分布律或分布函数

随机变量有两种:离散型随机变量,连续型随机变量。
离散型随机变量:随机变量可能取的值是有限个可列无限个。
连续型随机变量:可能取的值是连续的(这个定义是笔者自己简单总结的)。

关于连续型随机变量,专业(大学课本)的定义需要用到分布函数,所以在1.3中讲连续型变量的分布函数时,再讲其专业定义。

1.1 离散型随机变量的分布律

离散型随机变量 X X X所有可能取的值有 x k ( k = 1 , 2 , ⋅ ⋅ ⋅ ) x_k(k=1,2,\cdot \cdot \cdot) xk(k=1,2,) X X X取各个可能值的概率为
P ( X = x k ) = p k , k = 1 , 2 , ⋅ ⋅ ⋅ . ( 1 ) P(X=x_k)=p_k,k=1,2,\cdot \cdot \cdot.(1) P(X=xk)=pkk=1,2,.(1)
由概率的定义, p k p_k pk满足以下条件:

  1. p k ≥ 0 , k = 1 , 2 , ⋅ ⋅ ⋅ ; p_k \geq 0,k=1,2, \cdot \cdot \cdot; pk0k=1,2,
  2. ∑ k = 1 ∞ p k = 1. \sum_{k=1}^\infty p_k = 1 . k=1pk=1.

因为概率1以一定的规律分布在各个可能值上,所以称公式(1)为离散型随机变量 X X X的分布律。分布律也可以用表格的形式表示

X x 1 x_1 x1 x 2 x_2 x2 ⋅ ⋅ ⋅ \cdot \cdot \cdot x n x_n xn ⋅ ⋅ ⋅ \cdot \cdot \cdot
p k p_k pk p 1 p_1 p1 p 2 p_2 p2 ⋅ ⋅ ⋅ \cdot \cdot \cdot p n p_n pn ⋅ ⋅ ⋅ \cdot \cdot \cdot

1.2 分布函数

为什么在离散型随机变量的分布律、连续型随机变量的分布函数中间插上这么一节呢?
因为讲了离散型随机变量的分布律,才能讲离散型随机变量的分布函数;
讲了分布函数,才能引出连续型随机变量的定义。

  1. 由连续型随机变量引出分布函数的概念
    对于连续型随机变量,我们不会对某一个值感兴趣,而是对某一个区间感兴趣。但由于
    P { x 1 &lt; X ≤ x 2 } = P { X ≤ x 2 } − P { X ≤ x 1 } P\left \{ x_1&lt;X\leq x_2 \right \} = P \left \{ X\leq x_2 \right \} - P \left \{ X\leq x_1 \right \} P{x1<Xx2}=P{Xx2}P{Xx1}
    所以只需知道 P { X ≤ x 2 } P \left \{ X\leq x_2 \right \} P{Xx2} P { X ≤ x 1 } P \left \{ X\leq x_1 \right \} P{Xx1}即可。

注意:连续型随机变量和离散型随机变量都有分布函数。

  1. 分布函数
    X X X是一个随机变量, x x x是任意实数,函数
    F ( x ) = P { X ≤ x } , − ∞ &lt; x &lt; ∞ F(x)=P\left \{X\leq x \right \},-\infty &lt; x&lt; \infty F(x)=P{Xx}<x<
    称为 X X X分布函数

  2. 分布函数的性质
    <1> 分布函数是一个不减函数。
    <2> 0 ≤ F ( x ) ≤ 1 0 \leq F(x) \leq 1 0F(x)1,且
    F ( − ∞ ) = lim ⁡ x − &gt; − ∞ F ( x ) = 0 F(-\infty)=\lim_{x-&gt;-\infty}F(x)=0 F()=x>limF(x)=0
    F ( ∞ ) = lim ⁡ x − &gt; ∞ F ( x ) = 1 F(\infty)=\lim_{x-&gt;\infty}F(x)=1 F()=x>limF(x)=1

  3. 离散型随机变量的分布函数
    设离散型随机变量 X X X的分布律为 P { X = x k } = p k , k = 1 , 2 , ⋅ ⋅ ⋅ . P\left\{ X=x_k\right \}=p_k,k=1,2,\cdot \cdot \cdot. P{X=xk}=pkk=1,2,.
    X X X的分布函数为
    F ( x ) = P { X ≤ x } = ∑ x k ≤ x P { X = x } F(x)=P\left\{ X \leq x \right \} = \sum_{x_k \leq x} P\left\{ X = x \right \} F(x)=P{Xx}=xkxP{X=x}
    F ( x ) = ∑ x k ≤ x p k F(x) = \sum_{x_k \leq x}p_k F(x)=xkxpk
    总之,离散型随机变量的分布函数即各个可能取值概率值的累加和。
    举例:如(0-1)分布

X01
p k p_k pk 1 − p 1-p 1p p p p

其分布函数为
F ( x ) = { 0 X &lt; 0 p 0 ≤ X &lt; 1 1 X ≥ 1 F(x) = \begin{cases} 0 &amp; X&lt;0\\ p &amp; 0 \leq X &lt;1\\ 1 &amp; X \geq 1\\ \end{cases} F(x)=0p1X<00X<1X1

连续型随机变量的分布函数要繁琐些,后面细讲。

1.3 连续型随机变量的分布函数

  1. 连续型随机变量的定义
    对于随机变量 X X X的分布函数 F ( x ) F(x) F(x),存在非负函数 f ( x ) f(x) f(x),使得对于任意实数(即事件) x x x
    F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infty}^{x}{f(t)}dt F(x)=xf(t)dt
    则称 X X X为连续型随机变量,函数 f ( x ) f(x) f(x)称为 X X X的概率密度函数,简称概率密度。

  2. 概率密度 f ( x ) f(x) f(x)的性质
    <1> f ( x ) ≥ 0 f(x) \geq 0 f(x)0
    <2> ∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infty}^{\infty}f(x)dx=1 f(x)dx=1
    F ( x ) F(x) F(x)等于 X = − ∞ X=-\infty X= X = x X=x X=x y = 0 y=0 y=0 y = f ( x ) y=f(x) y=f(x)四条线之间的面积。

2 随机变量的分布

2.1 离散型随机变量的分布

离散型随机变量的分布包括 (0-1)分布伯努利(二项)分布泊松分布

2.1.1 (0-1)分布

随机变量只可能取0与1两个值,它的分布律是
P { X = k } = p k ( 1 − p ) ( 1 − k ) P \left \{X=k \right \}=p^k(1-p)^{(1-k)} P{X=k}=pk(1p)(1k)
或拆开写为
P ( X ) = { p , X = 1 1 − p , X = 0 P(X)=\begin{cases} p &amp;,&amp;X=1 \\ 1-p &amp;,&amp; X=0 \\ \end{cases} P(X)={p1pX=1X=0
分布律表格是

X01
p k p_k pk 1 − p 1-p 1p p p p

注意:我们暂且将(0-1)分布记为 X X X~ N ( p ) N(p) N(p)(这是笔者自己的记法),此举是为了突出(0-1)分布有一个参数 p p p。后面讲参数估计(例如点估计方法族中的极大似然估计)的时候会用到。

2.1.2 伯努利分布(也称二项分布)

**伯努利试验:**只有两个可能结果( A A A A ‾ \overline{A} A)的试验。设 P ( A ) = p P(A)=p P(A)=p,则 P ( A ‾ ) = 1 − p P(\overline A)=1-p P(A)=1p。将伯努利试验重复进行 n n n次称为 n n n 重伯努利试验

X X X表示 n n n重伯努利试验中事件 A A A发生的次数,X是一个随机变量,求它的分布律。
n次试验中,事件A发生了 k k k次的概率为 C n k p k ( 1 − p ) ( n − k ) C_n^kp^k(1-p)^{(n-k)} Cnkpk(1p)(nk),即有
P ( X = k ) = C n k p k ( 1 − p ) ( n − k ) , k = 0 , 1 , 2 , ⋅ ⋅ ⋅ , n . P(X=k)=C_n^kp^k(1-p)^{(n-k)},k=0,1,2,\cdot \cdot \cdot ,n. P(X=k)=Cnkpk(1p)(nk)k=0,1,2,,n.
显然 P { X = k } P\left \{X=k \right \} P{X=k}满足离散型随机变量分布律的条件,即 P { X = k } ≥ 0 P\left \{X=k \right \} \geq 0 P{X=k}0并且 ∑ k = 0 n P ( X = k ) = 1 \sum_{k=0}^nP(X=k)=1 k=0nP(X=k)=1
所以称随机变量 X X X从参数为 n n n, p p p的二项分布,并记为 X X X~ b ( n , p ) b(n,p) b(n,p)。(特别的,当 n = 1 n=1 n=1即只进行一次伯努利试验时,二项分布化为(0-1)分布)

注意: X X X~ b ( n , p ) b(n,p) b(n,p)有两个参数 n n n p p p,后面讲参数估计(例如点估计方法族中的极大似然估计)的时候会用到。

2.1.3 泊松分布

随机变量 X X X可能取的值为 0 , 1 , 2 , ⋅ ⋅ ⋅ 0,1,2,\cdot \cdot \cdot 0,1,2,,取各个值的概率为
P ( X = k ) = λ k e − k k ! , k = 0 , 1 , 2 , ⋅ ⋅ ⋅ , P(X=k)=\frac{\lambda ^ke^{-k}}{k!},k=0,1,2,\cdot \cdot \cdot, P(X=k)=k!λkekk=0,1,2,,
其中 λ &gt; 0 \lambda&gt;0 λ>0是泊松分布的数学期望或方差(泊松分布的数学期望和方差相等,都等于参数 λ \lambda λ),则称 X X X服从参数为 λ \lambda λ的泊松分布,记为 X X X ~ π ( λ ) \pi(\lambda) π(λ)

注意: 泊松分布只有一个参数 λ \lambda λ

2.2 连续型随机变量的分布

连续型随机变量的分布包括均匀分布指数分布正态分布

下面连续型随机变量的分布,只写出概率密度,。
分布函数,求积分即可,因为分布函数用的少就不写了。

2.2.1 均匀分布

若连续型随机变量 X X X具有概率密度
f ( x ) = { 1 b − a , a &lt; x &lt; b 0 , 其 他 f(x)=\begin{cases} \frac{1}{b-a}, &amp;a&lt;x&lt;b \\ 0 ,&amp; 其他 \\ \end{cases} f(x)={ba10a<x<b
则称 X X X在区间 ( a , b ) (a,b) (a,b)上服从均匀分布,记为 X X X~ U ( a , b ) U(a,b) U(a,b)

均匀分布的特点:等可能性。即随机变量 X X X落在 ( a , b ) (a,b) (a,b)中任意等长度子区间内的可能性(概率)是相同的。

2.2.2 指数分布

若连续型随机变量 X X X的概率密度为
f ( x ) = { 1 θ e − x / θ , x &gt; 0 , 0 , 其 他 , f(x) = \begin{cases} \frac{1}{\theta}e^{-x/\theta}, &amp; x&gt;0,\\ 0,&amp;其他, \end{cases} f(x)={θ1ex/θ,0,x>0

2.2.3 正态分布(又称高斯分布)

若连续型随机变量 X X X的概率密度为
f ( x ) = 1 2 π σ e − ( x − u ) 2 2 σ 2 , − ∞ &lt; x &lt; + ∞ , f(x)=\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-u)^2}{2\sigma^2}} ,-\infty&lt;x&lt;+\infty, f(x)=2πσ 1e2σ2(xu)2<x<+
其中, μ , σ μ ,σ μ,σ分别是分布的数学期望和标准差( σ 2 \sigma^2 σ2即方差),则称 X X X为服从参数 μ , σ μ ,σ μ,σ正态分布高斯分布,记为 X X X~ N ( u , σ 2 ) N(u,\sigma^2) N(u,σ2)

正态分布的性质:
<1> 曲线关于期望( x = u x=u x=u)对称。
<2> 当 x = u x=u x=u时取到最大值
f ( u ) = 1 2 π σ f(u)=\frac{1}{\sqrt{2\pi\sigma}} f(u)=2πσ 1

正态分布的期望值 μ μ μ决定了其位置,其标准差 σ σ σ决定了分布的幅度,由最大值公式可以看出, σ \sigma σ越小时图形变得越尖,因而 X X X落在 u u u附近的概率越大。

μ = 0 μ = 0 μ=0 σ = 1 σ = 1 σ=1时的正态分布是标准正态分布
一般正态分布转换为标准正态分布:
X X X~ N ( u , σ 2 ) N(u,\sigma^2) N(u,σ2),则 Y = X − u σ Y = \frac{X-u}{\sigma} Y=σXu~ N ( 0 , 1 ) N(0,1) N(0,1)服从标准正态分布。

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张之海

若有帮助,客官打赏一分吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值