错排总结—(题型)

Problem G: 白色相簿的季节

Time Limit: 1 Sec  Memory Limit: 128 MB

Description

又到了白色相簿的季节。狗哥作为广工最帅气的投递员兼代码手,因为最近突然想到没有女朋友而心情变得低落。那能怎么办?工作还是要继续啊!所以今天他又和往常一样开始了送快递的工作。但他发现他今天送的快递和往常不大一样。只有n封信,竟然是n个男生送给他们各自女朋友的信!!!面对这n对情侣的信(1<=n<=18),狗哥因为难过而失去了理智,他在这时问你,把这n封信全部配送错有多少种方案。并且把这首《届かない恋》送给了你。

Input

第一行一个T,表示样例数
接下来T行,每行一个正整数n(1<=n<=18),表示n封信。

Output

对于每组样例,输出一个数,表示n封信全部配送错的方案数。

Sample Input

223

Sample Output

12


裸题  运用公式   a[  i  ]=(i-1)!*(   a[    i-1    ]  +    a[     i+1   ]   )

#include<stdio.h>    
typedef long long ll;
int main()
{
      ll a[35]={0,0,1,2};
      for(int   i=4;i<=35;i++)
      {
           a[i]=(i-1)*(a[i-1]+a[i-2]);
      }
      int n,t;
      scanf("%d",&n);
      while(n--)
      {
           scanf("%d",&t);
           printf("%lld\n",a[t]);
      }
      return 0;
}


HDU-2048

HDU 2006'10 ACM contest的颁奖晚会隆重开始了! 
为了活跃气氛,组织者举行了一个别开生面、奖品丰厚的抽奖活动,这个活动的具体要求是这样的: 

首先,所有参加晚会的人员都将一张写有自己名字的字条放入抽奖箱中; 
然后,待所有字条加入完毕,每人从箱中取一个字条; 
最后,如果取得的字条上写的就是自己的名字,那么“恭喜你,中奖了!” 

大家可以想象一下当时的气氛之热烈,毕竟中奖者的奖品是大家梦寐以求的Twins签名照呀!不过,正如所有试图设计的喜剧往往以悲剧结尾,这次抽奖活动最后竟然没有一个人中奖! 

我的神、上帝以及老天爷呀,怎么会这样呢? 

不过,先不要激动,现在问题来了,你能计算一下发生这种情况的概率吗? 

不会算?难道你也想以悲剧结尾?! 
Input输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(1<n<=20),表示参加抽奖的人数。 

Output对于每个测试实例,请输出发生这种情况的百分比,每个实例的输出占一行, 结果保留两位小数(四舍五入),具体格式请参照sample output。 

Sample Input
1
2
Sample Output
50.00%


ans=(错排数)/(全排列数 )

#include<stdio.h>
int main()
{
    double  b[21]={0,0,1,2};
    int i,j,n,m;
    double a[21]={1,1,2,6};
    for(i=4;i<=20;i++){
        a[i]=i*a[i-1];
        b[i]=(i-1)*(b[i-1]+b[i-2]);
    }scanf("%d",&m);
    while(m--){
       scanf("%d",&n);
       printf("%.2lf%%\n",b[n]/a[n]*100);
    }

    return 0;
}
HDU-2049

国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的: 

首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排; 
然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个. 
最后,揭开盖头,如果找错了对象就要当众跪搓衣板... 

看来做新郎也不是容易的事情... 

假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能. 
Input输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。 
Output对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。 
Sample Input
2
2 2
3 2
Sample Output
1
3

ans=(错排数)×(组合数)

#include<stdio.h>
int main()
{

    long long int a[22]={1,1,2};
    long long int b[22]={0,0,1,2};
    int i,j,n,m,t;
    for(i=3;i<21;i++){
        a[i]=i*a[i-1];}
    for(i=4;i<21;i++){
        b[i]=(i-1)*(b[i-1]+b[i-2]);
    }
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&m);
        printf("%.0lld\n",a[n]/a[m]/a[n-m]*b[m]);
    }
    return 0;
}

题意 : 给你n个人, k 个数, 任意交换n个人的顺序,1号还在一号位就表示它的位置是对的. 则问你至少k个人还在对的位置的方案有几种. 

//思路:思路这个应该就可以想到用错排公式加组合数学解决. 因为涉及到除法进行去mod运算, 所以要用到逆元. 首先预处理所有的数据,然后直接算就是了.

#define ll long long int
const ll mod = 1e9+7;
const int maxn = 1e4+5;
int n,k;
ll qpow(ll x,ll y)
{
    ll res = 1;
    while(y){
        if(y&1) res = x * res % mod;
        x = x * x % mod;
        y >>= 1;
    }
    return res;
}

ll D[maxn],fac[maxn],inv[maxn];
void init()
{
    //因为这里我们是反着弄的,即0个放错时, 全部放对有一种方法的. 因为题目是求对的方法吗.
    //所以就应该初始化为1. 错的方法才是初始化为0.
    D[0] = 1; D[1] = 0; D[2] = 1;
    for(ll i=3;i<=maxn;i++){
        D[i] = (i-1)*(D[i-1]+D[i-2]) % mod;
    } //初始化D(n)错排数.
    fac[0] = 1;
    for(ll i=1;i<maxn;i++) fac[i] = (fac[i-1]*i) % mod;  // 初始化n!数组.
    inv[maxn-1] = qpow(fac[maxn-1],mod-2);//先求一最大数的逆元.
    for(ll i=maxn-2;i>=0;i--){
        inv[i] = (inv[i+1]*(i+1) % mod);//初始化每一个阶乘对应
   //的逆元. 这个看不太懂就把它写出来就行了. a*a的逆元==1,这样做可
   //以把每一个阶乘的逆元给预处理出来.

    }
}

ll C(int n,int m)
{
    return fac[n] * inv[m] % mod * inv[n-m] % mod;
}

void solve()
{
    scanf("%d%d",&n,&k);
    ll res = 0;
    for(int i=k;i<=n;i++){
        res += D[n-i]*C(n,n-i);    //C(n,i) 恒等 C(n,n-i),组合数学基本公式吗.
        res %= mod;
    }
    printf("%lld\n",res%mod);
}

int main()
{
    int t;
    scanf("%d",&t);
    init();
    while(t--){
        solve();
    }
}


阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页