凸 多 边 形 凸多边形 凸多边形


正 解 部 分 \color{red}{正解部分} 正解部分
一个 多边形 若为 凸多边形, 则需满足: 除去 最大边 所有边的权值和要 大于 最大边 的权值 .
设 f [ i , j ] f[i, j] f[i,j] 表示前 i i i 个数字, 凑成 j j j 的方案数,
g [ i , j ] g[i,j] g[i,j] 表示前 i i i 个数字, 凑成 j j j 的所有方案的权值和, 状态转移 如下:
f [ i , j ] = f [ i − 1 , j − i ] + f [ i − 1 , j ] g [ i , j ] = g [ i − 1 , j − i ] + f [ i − 1 , j − i ] + g [ i − 1 , j ] f[i,j] = f[i-1,j-i]+f[i-1,j] \\ g[i, j] = g[i-1, j-i]+f[i-1,j-i] + g[i-1,j] f[i,j]=f[i−1,j−i]+f[i−1,j]g[i,j]=g[i−1,j−i]+f[i−1,j−i]+g[i−1,j]
最大边 为 i i i 的方案数为 ∑ j = i + 1 i ( i − 1 ) 2 g [ i − 1 , j ] \sum\limits_{j=i+1}^{\frac{i(i-1)}{2}}g[i-1, j]

这篇博客探讨了如何判断一个多边形是否为凸多边形,通过动态规划的方法来解决问题。文章详细阐述了状态转移方程和计算最大边的方案数,最终给出了一种O(N^2)的时间复杂度的解决方案。
最低0.47元/天 解锁文章

780

被折叠的 条评论
为什么被折叠?



