凸多边形 [动态规划, 计数]

这篇博客探讨了如何判断一个多边形是否为凸多边形,通过动态规划的方法来解决问题。文章详细阐述了状态转移方程和计算最大边的方案数,最终给出了一种O(N^2)的时间复杂度的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

凸 多 边 形 凸多边形


正 解 部 分 \color{red}{正解部分}

一个 多边形 若为 凸多边形, 则需满足: 除去 最大边 所有边的权值和要 大于 最大边 的权值 .

f [ i , j ] f[i, j] f[i,j] 表示前 i i i 个数字, 凑成 j j j 的方案数,
g [ i , j ] g[i,j] g[i,j] 表示前 i i i 个数字, 凑成 j j j 的所有方案的权值和, 状态转移 如下:

f [ i , j ] = f [ i − 1 , j − i ] + f [ i − 1 , j ] g [ i , j ] = g [ i − 1 , j − i ] + f [ i − 1 , j − i ] + g [ i − 1 , j ] f[i,j] = f[i-1,j-i]+f[i-1,j] \\ g[i, j] = g[i-1, j-i]+f[i-1,j-i] + g[i-1,j] f[i,j]=f[i1,ji]+f[i1,j]g[i,j]=g[i1,ji]+f[i1,ji]+g[i1,j]

最大边 i i i 的方案数为 ∑ j = i + 1 i ( i − 1 ) 2 g [ i − 1 , j ] \sum\limits_{j=i+1}^{\frac{i(i-1)}{2}}g[i-1, j]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值