在Ubuntu 16.04中安装CUDA 9.0

在这里,把在Ubuntu 16.04系统上安装CUDA 9.0的步骤记录下来,以备查阅。

安装CUDA一定要参考官方的安装手册

准备工作

1. 检查自己的GPU是否支持CUDA(即是否为CUDA GPUs

lspci | grep -i nvidia

输出如下:

07:00.0 VGA compatible controller: NVIDIA Corporation GP104 [GeForce GTX 1080] (rev a1)
07:00.1 Audio device: NVIDIA Corporation GP104 High Definition Audio Controller (rev a1)

2. 查看GPU驱动版本

sudo ubuntu-drivers devices

输出如下:

== /sys/devices/pci0000:00/0000:00:03.1/0000:07:00.0 ==
vendor   : NVIDIA Corporation
modalias : pci:v000010DEd00001B80sv000010DEsd0000119Ebc03sc00i00
driver   : nvidia-384 - distro non-free recommended
driver   : xserver-xorg-video-nouveau - distro free builtin

注:这里看到的驱动版本为nvidia-384,是Ubuntu 16.04系统安装包自带的驱动,是经过测试的,我们应该使用此版本的驱动。如果要升级到更高版本,可能会引起问题(如循环登录等问题,可从网上搜到)。

3. 查看Linux版本

uname -m && cat /etc/*release

输出如下:

x86_64
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.6 LTS"
...

4. 检查自己的驱动版本与哪个版本的CUDA兼容

(版本兼容问题,可参考:NVIDIA CUDA Toolkit Release Notes

Table 1. CUDA Toolkit and Compatible Driver Versions
CUDA ToolkitLinux x86_64 Driver VersionWindows x86_64 Driver Version
CUDA 10.1 Update 1>= 418.67>= 425.25
CUDA 10.1.105>= 418.39>= 418.96
CUDA 10.0.130>= 410.48>= 411.31
CUDA 9.2 (9.2.148 Update 1)>= 396.37>= 398.26
CUDA 9.2 (9.2.88)>= 396.26>= 397.44
CUDA 9.1 (9.1.85)>= 390.46>= 391.29
CUDA 9.0 (9.0.76)>= 384.81>= 385.54
CUDA 8.0 (8.0.61 GA2)>= 375.26>= 376.51
CUDA 8.0 (8.0.44)>= 367.48>= 369.30

可以看出,我的系统应安装CUDA 9.0.

5. 下载CUDA 9.0安装包及所有补丁包(即Patches):

CUDA Toolkit 9.0 Downloads

安装CUDA 9.0

1. 关闭nouveau驱动

1.1 创建并打开文件"blacklist-nouveau.conf":

sudo gedit /etc/modprobe.d/blacklist-nouveau.conf

1.2 添加以下内容到该文件末尾:

blacklist nouveau
options nouveau modeset=0

1.3 重新生成kernel initramfs:

sudo update-initramfs -u

2. 把系统界面切换到命令行模式

2.1 打开文件"grub":

sudo gedit /etc/default/grub

2.2 找到这一行:

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"

修改为:

GRUB_CMDLINE_LINUX_DEFAULT="text"

2.3 更新GRUB:

sudo update-grub

2.4 打开multi-user模式:

sudo systemctl set-default multi-user.target

(注:该命令创建了一个文件符号链接"/etc/systemd/system/default.target",将其链接到"/lib/systemd/system/multi-user.target")

2.5 重启系统。

3. 安装CUDA 9.0

3.1 安装CUDA 9.0:

sudo sh cuda_9.0.176_384.81_linux.run --no-opengl-libs 

(注意不要安装OpenGL Libs,否则会造成循环登录的问题,可从网上搜到该问题。)

如果在安装过程中遇到问题(如安装失败),可打开log查看原因。如有依赖工具(如cmake等)未安装,可尝试安装这些依赖工具,然后再安装一次CUDA。

3.2 参考以上方式安装所有5个下载的补丁包。

4. 恢复系统图形化界面

(将步骤“2. 把系统界面切换到命令行模式”反向做一遍即可。)

4.1 将文件"/etc/default/grub"中"GRUB_CMDLINE_LINUX_DEFAULT"的值恢复为原来的值"quiet splash":

sudo gedit /etc/default/grub


    GRUB_CMDLINE_LINUX_DEFAULT="text"
->  GRUB_CMDLINE_LINUX_DEFAULT="quiet splash"

4.2 删除或重命名文件"/etc/systemd/system/default.target":

sudo mv /etc/systemd/system/default.target /etc/systemd/system/default.target.backup

5. 重启系统,进入图形化界面

6. 把CUDA加入到环境变量

6.1 打开"/etc/profile":

sudo gedit /etc/profile

6.2 在文件末尾添加以下内容:

export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

6.3 重启系统,检查上述环境变量是否设置成功

7. 测试CUDA

7.1 查看CUDA的版本:

nvcc -V

输出为:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176

还可运行:

nvidia-smi

输出为:

Sun Jun  2 16:16:01 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.130                Driver Version: 384.130                   |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 1080    Off  | 00000000:07:00.0  On |                  N/A |
| 27%   37C    P8    15W / 180W |    688MiB /  8112MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1310      G   /usr/lib/xorg/Xorg                           288MiB |
|    0      1881      G   compiz                                       214MiB |
|    0      2664      G   fcitx-qimpanel                                 8MiB |
|    0      2957      G   ...uest-channel-token=15858479812120104221   174MiB |
+-----------------------------------------------------------------------------+

7.2 编译并运行CUDA自带的用例:

cd /usr/local/cuda-9.0/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

输出为:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 1080"
  CUDA Driver Version / Runtime Version          9.0 / 9.0
  CUDA Capability Major/Minor version number:    6.1
  Total amount of global memory:                 8113 MBytes (8506769408 bytes)
  (20) Multiprocessors, (128) CUDA Cores/MP:     2560 CUDA Cores
  GPU Max Clock rate:                            1734 MHz (1.73 GHz)
  Memory Clock rate:                             5005 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 2097152 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 7 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.0, CUDA Runtime Version = 9.0, NumDevs = 1
Result = PASS

其他

关于如何安装Ubuntu 16.04系统,可参考:

  • 0
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

飞翼剑仆

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值