多项式A除以B


多项式除法
这里就不展开介绍多项式除法,只需将多项式看成一个整体就类似于整数除法。
(x3-1) / (x-1) = x2+x+1
多项式除法的演示图
解题思路:模拟 A / B 多项式除法
方案一:递归
#include<bits/stdc++.h>
using namespace std;
double Q[1000010], R[1000010];
double a[1000010], b[1000010];
int q[1000010], index_b=0;
void f(int max_a, int max_b){
double d = a[max_a]/b[max_b];
for(int i=0; i<index_b; i++)
a[q[i]+max_a-max_b] -= b[q[i]]*d;
Q[max_a-max_b]=d;
if(max_a==max_b){
memcpy(R, a, sizeof(a));
return;
}
max_a--;
while(max_a>max_b&&fabs(a[max_a])<1e-8) max_a--;
f(max_a, max_b);
return;
}
int main(

本文探讨了多项式A除以B的问题,通过模拟A/B的多项式除法,比较了递归和循环两种解题方案。递归方法在处理大问题时可能导致超时,而循环方案则能成功通过所有样例,显示出更高的效率。总结指出,在实际应用中,循环通常比递归更高效,尽管递归有时可以转换为循环,但会增加复杂性。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=110201735&d=1&t=3&u=81ba3c3e1a2b41c68ed49615feea830c)

被折叠的 条评论
为什么被折叠?



