笛卡儿积
给定两个集合 A 和 B,笛卡儿积记为 A × B = {<x, y>|x∈A, y∈B}。
举例说明
A = {a, b},B = {c, d},求 A × B。
解: A × B = {a, b} × {c, d} = {<a, c>,<a, d>,<b, c>,<b, d>}
二元关系
给定两个集合 A 和 B,R 是笛卡儿积 A × B 的任意子集,则称 R 为从 A 到 B 的一个二元关系。
举例说明
若 A × B = {<a, c>,<a, d>,<b, c>,<b, d>}
则 <a, c> 为从 A 到 B 的一个二元关系。
二元关系的表示
关系矩阵表示法
给定两个集合 A 和 B,R 是 A 到 B 的二元关系,用集合 A 的元素标注矩阵的行,用集合 B 的元素标注矩阵的列。当 a∈A,b∈B,若 <a, b> ∈ R 则在矩阵的 a 行 b 列标注 1,若 <a, b> ∉ R 则在矩阵的 a 行 b 列标注0。所得矩阵为 R 的关系矩阵。
举例说明
A = {a, b},B = {c, d},R = {&l

本文介绍了离散数学中的核心概念——二元关系,包括笛卡尔积的定义与实例,以及二元关系如何通过关系矩阵和关系图进行表示。通过对不同表示方法的详细阐述,帮助读者深入理解二元关系在理论和实践中的应用。
最低0.47元/天 解锁文章
1898

被折叠的 条评论
为什么被折叠?



