1、理想双目相机成像模型计算深度基本原理
左右两个相机位于同一平面(光轴平行),且相机参数(如焦距f)一致。

深度:z = f * b / d
计算深度所需数据如下
(1)、基线 b、焦距 f 可通过相机标定获得。
(2)、相机视差d,即左相机的每个像素点(xl, yl)和右相机中对应点(xr, yr)的对应关系,可通过极线约束及图像匹配算法对两个相机的像素点进行快速地匹配。
极线约束
极线约束(Epipolar Constraint)就是指在理想模型下,当同一个空间点在两幅图像上分别成像时,已知左图投影点p1,那么对应右图投影点p2一定在相对于p1的极线上,这样可以极大的缩小匹配范围。

C1,C2是两个相机,P是空间中的一个点,P和两个相机中心点C1、C2形成了三维空间中的一个平面P-C1-C2,称为极平面(Epipolar plane)。极平面和两幅图像相交于两条直线,这两条直线称为极线

本文介绍了双目相机成像模型计算深度的基本原理,包括理想模型和非理想模型。理想模型中,深度计算依赖于基线、焦距和相机视差,通过极线约束和图像匹配算法确定对应点。非理想模型则需要图像矫正技术来达到理想条件。图像匹配算法包括基于滑动窗口和能量优化的方法。
最低0.47元/天 解锁文章
433

被折叠的 条评论
为什么被折叠?



