CUDA、CUDNN在windows下的安装及配置

本文详细介绍了在Windows环境下安装CUDA和CUDNN的步骤,包括查看支持的CUDA版本、下载安装、配置环境变量以及测试CUDA和TensorFlow2.0的过程。在安装过程中特别强调了显卡驱动与CUDA版本的匹配,以及解决可能出现的错误,如版本不一致和缺少依赖库问题。
摘要由CSDN通过智能技术生成

目录

一、安装前的准备

(1)查看自己支持的CUDA版本,打开NVIDIA控制面板,选择系统信息

(2)NVIDIA官网下载对应CUDA版本

 (3)CUDNN的下载

 二、安装过程

(1)安装CUDA

(2)配置CUDNN

(3)配置环境变量

(4)测试CUDA

(5)查询显卡算力

三、 TensorFlow 2.0 安装与测试 

四、可能出现的问题

(1)显卡驱动、CUDA版本不一致的问题,需要按照前面的步骤查看当前显卡驱动所支持的CUDA版本,去NVIDIA官网下载对应版本的CUDA

​(2)ImportError: Could not find 'cudart64_100.dll'错误


一、安装前的准备

(1)查看自己支持的CUDA版本,打开NVIDIA控制面板,选择系统信息

 

 NVIDIA控制面板下  系统信息 显示:CUDA10.1。这里CUDA10.1是支持的最高版本的CUDA,可以向下兼容,且可以安装多个版本的CUDA,可以通过更改环境变量来更改为你需要用到的CUDA版本。CUDA多版本共存请参考博客: Windows下CUDA多版本共存

(2)NVIDIA官网下载对应CUDA版本

CUDA下载地址:CUDA Toolkit Archive | NVIDIA Developer

 

 (3)CUDNN的下载

官网下载地址:https://developer.nvidia.com/rdp/cudnn-download

没有账号需要注册账号,账号登录后,找到自己对应的CUDA版本,点击下载

 

 

 

 二、安装过程

(1)安装CUDA

安装路径,选择OK(安装完成后路径会自动变化,所以这里路径选择默认就好)

Windows操作系统是最广泛使用的计算机操作系统之一,CUDAcuDNN是用于深度学习研究的重要工具。本文将介绍在Windows系统上安装CUDAcuDNN的步骤。 首先,首先需要下载适合您计算机的CUDAcuDNN版本。您可以在NVIDIA官方网站上找到适合您的版本。同时,请确定您的计算机是否支持CUDA。如果您的GPU不支持CUDA,那么您无法正常运行CUDA程序。 接下来,在下载CUDAcuDNN之前,您需要为您的计算机安装适当的NVIDIA GPU驱动程序。您可以在NVIDIA官方网站上找到此驱动程序。请务必检查驱动程序版本是否与您要安装CUDAcuDNN版本兼容。 然后,请按照下载的CUDAcuDNN版本的说明进行安装,并在安装期间选择适当的选项。请注意,CUDA需要安装Visual Studio,因此请确保您已经安装了适当的Visual Studio版本。 在安装CUDAcuDNN之后,您需要配置环境变量才能使用它们。具体来说,您需要将CUDAcuDNN的bin目录添加到您的系统PATH环境变量中。 最后,请启动Visual Studio并尝试编译并运行CUDA示例程序以确保一切正常。如果您遇到任何问题,请查看NVIDIA官方网站上的文档或在相应的开发者论坛上发帖询问问题。 总之,在Windows系统上安装CUDAcuDNN相对简单,只需遵循相关的指南并按照说明操作即可。最终,这些工具将被用于实现先进的深度学习模型并进行创新的研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值