自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(80)
  • 收藏
  • 关注

原创 编译型语言、解释型语言与混合型语言:原理、区别与应用场景详解

本文详细介绍了按照执行方式对高级语言进行分类的编译型语言、解释型语言和混合型语言的原理、区别与应用场景。

2025-04-24 10:58:15 1112

原创 计算机语言进化史:从机器语言到高级语言的全面解析

本文详细介绍了计算机语言发展史中的机器语言、汇编语言与高级语言。

2025-04-24 10:38:43 666

原创 【数学建模】孤立森林算法:异常检测的高效利器

本文详细介绍了在数学建模领域的一种经常被用来进行异常检测的算法——孤立森林算法。孤立森林算法凭借其简单、高效、可扩展的特点,已成为异常检测领域的重要工具。异常检测的目标是从数据集中找出与大多数数据显著不同的异常点。在实际应用中,建议将孤立森林与其他异常检测方法结合使用,以获得更加稳健的检测结果。与传统的基于密度或距离的异常检测方法不同,孤立森林采用了一种全新的视角:通过随机构建决策树来孤立数据点。基于这两个特性,异常点通常更容易在决策树的早期被孤立出来,即到达叶子节点所需的决策路径更短。

2025-04-22 16:20:30 1080

原创 【深度学习】LoRA:低秩适应性微调技术详解

本文详细介绍了在深度学习中常用的一种低秩适应性微调技术——LoRA。LoRA作为一种优雅且高效的参数高效微调方法,极大地降低了预训练大模型微调的资源门槛,使个人研究者和小型团队也能参与到大模型的研发中。

2025-04-22 16:06:01 931

原创 齐次坐标系下的变换矩阵

本文在简要介绍其次坐标系及其变换矩阵的基础上介绍了齐次坐标系下的变换矩阵及其使用方式。

2025-04-21 19:09:26 1137

原创 【数学建模】随机森林算法详解:原理、优缺点及应用

本文详细介绍了在数学建模中常用的随机森林算法的原理、优缺点与应用。

2025-04-21 18:46:39 1316

原创 【数学建模】佳点集(Good Point Set)在智能优化算法中的应用与实现

本文介绍了在智能优化算法中常用的佳点集(Good Point Set, GPS)。佳点集是一种用于优化初始分布的方法,它能够在有限资源约束下生成覆盖性好、均匀度高的点集。在智能优化算法中,佳点集技术可以有效提高初始种群的多样性和分布均匀性,从而增强算法的全局搜索能力。[1]佳点集的核心思想是通过特定的数学方法构造一组在搜索空间中分布均匀的点,这些点能够更好地覆盖整个解空间避免了随机初始化可能带来的聚集现象,从而提高算法的搜索效率。

2025-04-13 23:55:11 1164

原创 齐次坐标系统:什么是齐次坐标?为什么要引入齐次坐标?

本文详细介绍了齐次坐标系统。在计算机图形学、计算机视觉、相机标定、三维建模等领域,齐次坐标是一个非常重要的数学工具。齐次坐标是一种表示几何点的方式,它通过添加一个额外的坐标分量,将n维空间中的点表示为n+1维空间中的点。其作用在于:在转型(计算机图形图形的几何变换)问题中,引入齐次坐标可以将不是线性变换的平移变换与旋转、缩放等齐次变换统一成矩阵乘法的形式,使得多次变换可以通过矩阵连乘来实现形成更复杂的变换,从而简化计算和降低运算量。

2025-04-13 23:49:53 1142

原创 【数学建模】(智能优化算法)鲸鱼优化算法(Whale Optimization Algorithm)详解与应用

本文详细介绍了在数学建模中常用的一种智能优化算法——鲸鱼优化算法。鲸鱼优化算法作为一种新兴的群体智能优化算法,凭借其简单高效的特点,在众多领域展现出良好的应用前景。

2025-04-11 21:49:28 1188

原创 【数学建模】(智能优化算法)天牛须算法(Beetle Antennae Search, BAS)详解与Python实现

本文介绍了数学建模中常用的一种智能优化算法——天牛须算法。天牛须算法作为一种新兴的优化算法,凭借其简单高效的特点,在各类优化问题中展现出良好的应用前景。虽然还存在一些局限性,但通过不断的改进和与其他算法的结合,天牛须算法有望在更多领域发挥重要作用。

2025-04-11 07:58:59 785

原创 【数学建模】(智能优化算法)萤火虫算法(Firefly Algorithm)详解与实现

本文介绍了一种有趣且高效的群体智能优化算法——萤火虫算法。作为一种生物启发式算法,它模拟了自然界中萤火虫的社会行为,特别是它们通过荧光相互吸引的特性。这个算法由剑桥大学的杨翔宇(Xin-She Yang)教授于2008年提出,在解决复杂优化问题方面表现出色。萤火虫算法作为一种生物启发式优化算法,通过模拟萤火虫的社会行为,在解决复杂优化问题方面展现出良好的性能。

2025-04-10 16:22:34 901

原创 【数学建模】(智能优化算法)粒子群优化算法(PSO)详解与Python实现

本文介绍了粒子群优化算法(Particle Swarm Optimization, PSO)的基本原理和实现方法。作为一种受自然界鸟群觅食行为启发的智能优化算法,PSO因其简单高效的特点在机器学习、神经网络训练、函数优化等领域有着广泛应用。粒子群优化算法是由Kennedy和Eberhart于1995年提出的一种群体智能优化算法。它模拟了鸟群的社会行为,如鸟在寻找食物时的协作方式。在PSO中,每个候选解被视为一个“粒子”,所有粒子在搜索空间中移动,并根据自身经验和群体经验寻找个体最优解和群体最优解。

2025-04-10 16:10:22 1251

原创 【深度学习】Downstream Model:预训练模型的下游应用与微调技术

下游模型(Downstream Model)是指在预训练模型基础上,通过微调(Fine-tuning)或迁移学习方法,针对特定任务进行优化的模型。下游任务是指我们真正想要解决的具体应用任务,如文本分类、命名实体识别等。在自然语言处理领域,下游任务建立在预训练模型之上,利用预训练模型学习到的语言知识来解决特定问题。预训练模型通过大规模语料库学习通用语言表示,而下游任务则利用这些表示来解决具体应用场景的问题。

2025-04-09 14:30:30 876

原创 【深度学习】对比学习(Contrastive Learning)解析

本文详细介绍了一种自监督学习方法——对比学习(Contrastive Learning)。对比学习作为一种强大的自监督学习方法,已经在计算机视觉、自然语言处理、推荐系统等多个领域展现出巨大潜力。它不仅降低了对标注数据的依赖,还提升了模型的泛化能力和表示学习能力。

2025-04-09 13:42:49 1572

原创 WSL2迁移教程:如何备份和转移Ubuntu子系统到新位置

本文详细介绍了迁移WSL2的虚拟磁盘(ext4.vhdx)到其他盘符的方法。随着WSL2使用时间的增长,WSL占用的磁盘空间可能会越来越大,因此有时候我们需要将其迁移到其他磁盘分区(尽量避免占用系统盘的空间)以释放系统盘的空间。

2025-04-07 21:44:09 1208

原创 在PPT中同时自动播放多个视频的方法

在PPT制作的过程中,我们经常遇到需要同时自动播放多个视频的情况。本文将详细介绍实现这种效果的操作方法。

2025-04-07 21:28:12 1340

原创 大数据技术发展与应用趋势分析

大数据(Big Data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。大数据具有容量大(Volume)、类型多(Variety)、速度快(Velocity)和价值密度低(Value)的特点,即所谓的"4V特性。随着互联网、物联网、云计算等技术的快速发展,大数据已成为当今信息技术领域的热点,对各行各业产生了深远影响。1。

2025-04-05 23:28:33 1205

原创 【数学建模】(时间序列模型)ARIMA时间序列模型

本文详细介绍了ARIMA(自回归综合移动平均)时间序列模型及其在数据分析中的应用。ARIMA模型由自回归(AR)、差分(I)和移动平均(MA)三部分组成。文章系统讲解了ARIMA建模的六个关键步骤:平稳性检验、差分处理、模型识别、参数估计、模型诊断和预测应用。此外,文章还概述了其他常见时间序列模型,包括简单时间序列模型、指数平滑模型、ARIMA族模型的扩展、状态空间模型以及基于机器学习和深度学习的现代方法(LSTM、Transformer等)。

2025-04-05 16:20:51 2443 2

原创 Ground Truth(真实标注数据):机器学习中的“真相”基准

本文介绍了机器学习与深度学习领域的一个常见概念:Ground Truth(GT,真实标注数据)。Ground Truth(简称GT)是指在训练和评估机器学习模型时使用的已知正确答案或标签。它是模型学习的基础,也是评估模型性能的标准。在图像分类任务中,Ground Truth是每张图片的正确类别标签(label)在目标检测中,Ground Truth是物体在图像中的精确位置和类别(mask、annfiles等)在自然语言处理中,Ground Truth可能是文本的情感标签或正确的翻译。

2025-03-27 16:23:27 1217

原创 【数学建模】(启发式算法)蚁群算法(Ant Colony Optimization)的详解与应用

本文介绍了在数学建模中常用的一种启发式算法——蚁群算法(Ant Colony Optimization, ACO)。蚁群算法是一种模拟蚂蚁觅食行为的群智能优化算法,广泛应用于组合优化问题的求解。本文将深入介绍蚁群算法的原理、实现方法及其应用场景。蚁群算法作为一种生物启发式算法,通过模拟蚂蚁集体行为解决复杂的优化问题,展现了群体智能的强大力量。

2025-03-27 16:16:18 1002

原创 【数学建模】(启发式算法)遗传算法:自然选择的计算模型

本文介绍了在数学建模中常用的一种启发式算法:遗传算法。遗传算法作为一种启发式优化方法,通过模拟生物进化过程,为复杂优化问题提供了一种有效的解决思路。随着计算能力的提升和算法的不断改进,遗传算法与其他智能算法的结合(如遗传神经网络、遗传模糊系统等)将为人工智能领域带来更多可能性。未来研究方向包括:提高算法效率、改进编码方式、设计更有效的遗传算子、与深度学习的结合等。随着这些技术的发展,遗传算法将在更广泛的领域发挥重要作用。

2025-03-27 16:03:46 1500 2

原创 【数学建模】(智能优化算法)元胞自动机在数学建模中的应用

本文介绍了一种在数学建模中常用的智能优化算法——元胞自动机。元胞自动机(cellular automata,CA) 是一种时间、空间、状态都离散,空间相互作用和时间因果关系为局部的网格动力学模型,具有模拟复杂系统时空演化过程的能力,在模拟交通流、传染病、火灾蔓延等领域有着重要的应用。

2025-03-27 15:44:01 911

原创 【数学建模】(启发式算法)模拟退火算法:原理、实现与应用

本文详细接受了一种在数学建模中常用的启发式算法:模拟退火算法,并简要介绍了P问题、NP问题、NP难问题等名词。

2025-03-27 15:16:56 1372

原创 【数学建模】动态规划算法(Dynamic Programming,简称DP)详解与应用

本文介绍了数学建模与算法类竞赛中常用的动态规划(Dynamic Programming, DP)算法。动态规划是一种强大的算法设计技术,通过将复杂问题分解为简单子问题并存储中间结果,有效地解决了许多优化问题。掌握动态规划思想需要大量练习,建议从简单问题入手,逐步提高解题能力。在实际编程中,动态规划的思想远比具体的代码实现更为重要,关键在于找到问题的状态定义和转移方程。

2025-03-27 14:34:59 1602

原创 【深度学习】GAN生成对抗网络:原理、应用与发展

本文介绍了一种生成模型——GAN(生成对抗网络)。GAN作为深度学习领域的重要创新,不仅在学术界引起了广泛关注,也在工业界找到了丰富的应用场景。GAN中的两个网络通过对抗训练不断提升自己的能力:生成器努力生成更逼真的数据以欺骗判别器,判别器则努力提高自己的鉴别能力。如果你想要更详细地了解某个特定的GAN变体或应用场景,可以告诉我,我可以为你提供更深入的内容。条件GAN通过引入额外的条件信息(如类别标签),使生成器能够生成特定类别的数据。

2025-03-25 16:39:09 1748

原创 【深度学习】扩散模型(Diffusion Model)详解:原理、应用与当前进展

本文介绍了一种生成模型——扩散模型(Diffusion Model)。扩散模型作为生成式AI的重要技术,已经在多个领域展现出巨大潜力。随着算法的不断优化和计算资源的提升,扩散模型将在更广泛的应用场景中发挥作用,推动生成式AI的进一步发展。

2025-03-25 16:38:03 2234 2

原创 【深度学习】Self-Attention机制详解:Transformer的核心引擎

本文介绍了Self-Attention(自注意力机制)。在深度学习领域,Transformer架构的出现彻底改变了自然语言处理(NLP)的格局,而Self-Attention(自注意力)机制则是Transformer的核心组件。Self-Attention兼具了卷积的局部处理能力和全连接层的全局连接特性,但它通过动态生成权重的方式实现了更灵活的表示学习,这也是Transformer架构成功的关键因素之一。

2025-03-24 20:46:31 1306

原创 【深度学习】Cross-Attention(交叉注意力)机制详解与应用

Cross-Attention(交叉注意力)是一种特殊的注意力机制,用于处理两个不同序列或模态之间的关系。与Self-Attention(自注意力)不同,Cross-Attention允许一个序列(查询序列)通过注意力机制来关注另一个序列(键值序列)中的信息。简单来说,Cross-Attention回答的问题是:“在序列A的每个位置,我应该关注序列B中的哪些部分?

2025-03-24 20:31:14 2058

原创 元数据(Metadata):数据的数据,信息系统的基石

本文介绍了在各种信息系统和数据库中常用的“元数据”。元数据可以理解为“关于数据的数据”。它是描述其他数据的结构化信息,提供了对数据的上下文、内容和结构的描述。简单来说,元数据就像是数据的“身份证”,记录了数据的各种特征和属性。拍摄时间地理位置相机型号分辨率文件大小作者信息。

2025-03-24 08:53:00 715

原创 Web1.0、Web2.0、Web3.0:互联网进化之旅

本文介绍了互联网发展的三个阶段:Web1.0、Web2.0、Web3.0。从Web1.0的静态信息展示,到Web2.0的社交互动平台,再到Web3.0的去中心化价值网络,互联网正在经历一场深刻的范式转变。虽然Web3.0仍处于早期发展阶段,面临着技术、用户体验和监管等多方面挑战,但其所代表的用户数据主权、价值互联和去中心化治理理念,很可能成为互联网下一阶段发展的重要方向。作为开发者和互联网用户,了解这三个阶段的特点和演变逻辑,有助于我们更好地把握技术趋势,参与到互联网的未来构建中。

2025-03-24 08:47:59 953

原创 【数学建模】最大最小值模型详解

本文介绍了数学建模中的最大最小值模型。最大最小值模型是数学建模中的基础模型,掌握其基本原理和求解方法对于解决实际问题具有重要意义。在应用过程中,需要根据具体问题选择合适的建模方法和求解算法,同时注意模型的假设条件和局限性。

2025-03-22 23:54:24 1309

原创 【数学建模】多目标规划模型:原理、方法与应用

本文介绍了在数学建模领域常用的最大最小化模型。最大最小化模型是一种强大的决策算法,在博弈论、人工智能和多智能体系统中有广泛应用。通过理解其基本原理并掌握相关优化技术,我们可以开发出高效的对抗性决策系统。虽然最大最小化算法在计算复杂度方面存在挑战,但通过 Alpha-Beta 剪枝、深度限制和启发式评估等优化技术,可以显著提高其实用性。随着人工智能技术的发展,最大最小化模型及其变体将继续在各种应用场景中发挥重要作用。

2025-03-22 23:27:10 982

原创 微服务分层架构详解:表示层、应用层与基础设施层的协同工作

本文介绍了华为云市场提出的微服务分层架构。微服务分层架构通过将应用程序划分为表示层、应用层和基础设施层,实现了系统的高内聚、低耦合。每个层次都有其明确的职责和技术选型,通过协同工作,能够构建出高效、可扩展、易维护的分布式系统。在实际开发中,选择合适的工具和技术栈,合理设计每个层次的架构,是确保系统成功的关键。

2025-03-21 20:28:45 1179

原创 Spring Boot三层架构详解

本文介绍了Spring Boot三层架构。Spring Boot 三层架构是一种常见的企业级应用程序架构,它将应用程序分为三个主要层次:数据访问层(DAO)、业务逻辑层(Service)和控制层(Controller)。这种架构有助于提高代码的可维护性和扩展性。

2025-03-21 20:19:11 890

原创 .NET三层架构详解

本文介绍了.NET三层架构。三层架构中表示层、业务逻辑层和数据访问层这种分层设计有助于实现关注点分离,使系统更加模块化、可维护和可扩展。

2025-03-20 22:13:21 1360

原创 【数学建模】主成分分析(PCA)算法在数学建模中的应用

本文详细介绍了数学建模中经常使用的主成分分析算法。主成分分析是一种统计方法,通过正交变换将可能相关的变量转换为线性不相关的变量集合,这些新变量被称为主成分。PCA的核心思想是寻找数据中方差最大的方向,并将数据投影到这些方向上,从而在保留数据主要信息的同时降低数据维度。P.S. 作者本人感觉PCA和在图像处理中用到的“调色板”有异曲同工之妙。如果是RGB都是[0,256]的全彩色,那么一个像素需要24bit;如果只选取有代表性的若干种颜色制作成调色板,那么将可以在不明显损失图像质量的基础上大大节省存储空间。

2025-03-20 17:23:01 1340 2

原创 【数学建模】灰色关联分析模型详解与应用

本文介绍了在数学建模中常用的灰色关联分析模型。在数据分析领域,我们经常面临样本量少、信息不完全、数据不确定性高的情况。传统的统计方法在这种情况下往往难以发挥作用,而灰色系统理论及其衍生的灰色关联分析模型则为解决此类问题提供了有效工具。本文将详细介绍灰色关联分析的基本原理、计算步骤和应用场景,并通过实例展示其实际应用。

2025-03-19 14:47:28 1364

原创 【数学建模】模糊综合评价模型详解、模糊集合论简介

本文详细解释了数学建模中常用的模糊综合评价模型,并简要介绍了模糊集合论的基本知识。模糊综合评价法(Fuzzy Comprehensive Evaluation, FCE)是一种基于模糊数学的综合评价方法,它根据模糊数学的隶属度理论,将定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象进行综合评价。

2025-03-19 14:38:53 1159

原创 【数学建模】熵权法

本文介绍了数学建模中常用的熵权法。熵权法是一种常用的用于多指标决策问题中的权重确定方法,它通过对决策矩阵的熵值进行计算,来自动地评估各个指标的权重。熵值能够反映各个指标的不确定性,熵值越小,表明该指标的信息量越大,反之亦然。熵权法可以避免人为设定权重的问题,通过熵权法确定的权重是一个客观量,只和数据本身的性质有关。熵权法在多目标优化问题中具有广泛的应用。

2025-03-18 20:33:35 2542

原创 【数学建模】TOPSIS法简介及应用

本文介绍了在数学建模中在多目标决策分析问题中常用的TOPSIS法及其应用。

2025-03-18 20:22:16 1321

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除