HDU ~ 1575 ~ Tr A (矩阵快速幂)

16人阅读 评论(0) 收藏 举报
分类:

思路:模板题,模板题。


#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD = 9973;
struct mat
{
    int r, c;
    ll m[15][15];        

    mat (int r, int c)
    {
        this->r = r, this->c = c;
        memset(m, 0, sizeof(m));
    }

    mat operator + (mat a) const
    {
        mat ans(r, c);
        for (int i = 1; i <= r; i++)
        {
            for (int j = 1; j <= c; j++)
            {
                ans.m[i][j] = (m[i][j] + a.m[i][j]) % MOD;
            }
        }
        return ans;
    }

    mat operator * (mat a) const
    {
        mat tmp(r, a.c);
        for (int i = 1; i <= tmp.r; i++)
        {
            for (int j = 1; j <= tmp.c; j++)
            {
                tmp.m[i][j] = 0;
                for (int k = 1; k <= c; k++)
                {
                    tmp.m[i][j] = (tmp.m[i][j] + (m[i][k] * a.m[k][j]) % MOD) % MOD;
                }
            }
        }
        return tmp;
    }

    mat operator ^ (int n) const //注意运算符优先级比较低,多用括号;
    {
        mat ans(r, r), tmp(r, r);
        memcpy(tmp.m, m, sizeof(tmp.m));
        for (int i = 1; i <= ans.r; i++) ans.m[i][i] = 1;
        while(n)
        {
            if(n&1) ans = ans*tmp;
            tmp = tmp*tmp;
            n >>= 1;
        }
        return ans;
    }

    void print() const
    {
        for (int i = 1; i <= r; i++)
        {
            for (int j = 1; j <= c; j++)
            {
                printf("%lld",m[i][j]);
                if (j == c) printf("\n");
                else printf(" ");
            }
        }
    }

};
int main()
{
    int T; scanf("%d", &T);
    while (T--)
    {
        int n, k;
        scanf("%d%d", &n, &k);
        mat A(n, n);
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                scanf("%d", &A.m[i][j]);
            }
        }
        A = (A^k);
        int ans = 0;
        for (int i = 1; i <= n; i++) ans = (ans + A.m[i][i])%MOD;
        cout << ans << endl;
    }
    return 0;
}
/*
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
*/


查看评论

HDU1575 Tr A(矩阵快速幂)

A - Tr A Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status...
  • yeguxin
  • yeguxin
  • 2015-03-04 20:11:34
  • 295

HDU1575-Tr A(矩阵快速幂)

题目链接 题意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。 思路:简单的矩阵快速幂 代码: #include ...
  • u011345461
  • u011345461
  • 2014-08-29 23:47:30
  • 1129

hdu 1575 Tr A(矩阵乘法)

Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub...
  • clover_hxy
  • clover_hxy
  • 2016-05-22 17:19:19
  • 236

【HDU 1575 Tr A】+ 矩阵快速幂

Tr A Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub...
  • WYK1823376647
  • WYK1823376647
  • 2016-11-06 19:01:55
  • 363

hdu 1575Tr A(最基本的矩阵快速幂)

Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub...
  • shadowcw
  • shadowcw
  • 2016-09-09 14:36:11
  • 323

hdu - 1575 - Tr A(矩阵快速幂)

题意:求矩阵A的k次幂的主对角线上元素和模9973((2 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 ——>>矩阵快速幂。。。 #incl...
  • SCNU_Jiechao
  • SCNU_Jiechao
  • 2013-08-21 20:47:26
  • 557

HDU 1575 Tr A(矩阵快速幂)

Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub...
  • llwwlql
  • llwwlql
  • 2016-03-02 20:32:24
  • 339

HDU - 1575 Tr A(矩阵快速幂)

题意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。 思路:先求矩阵的 k 次幂,再把对角线元素相加模 m。用快速幂,并且中间就模m,以免溢出。...
  • u014028317
  • u014028317
  • 2015-08-18 01:20:18
  • 769

HDU (1575)Tr A ---矩阵快速幂

Tr A Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。 Input 数据的第一行是...
  • sxy201658506207
  • sxy201658506207
  • 2017-10-23 20:10:42
  • 72
    个人资料
    持之以恒
    等级:
    访问量: 5万+
    积分: 4167
    排名: 9020
    最新评论