POJ ~ 3070 ~ Fibonacci (矩阵快速幂模板)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ZscDst/article/details/79952242

题意:求斐波那契的第N项,f[0] = 0,f[1] = 1。对10000取余。

 

思路:模板题,模板题,模板题。

 

//#include <bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int MOD = 1e4;
struct mat
{
    int r, c;
    ll m[10][10];       

    mat (int r, int c)
    {
        this->r = r, this->c = c;
        memset(m, 0, sizeof(m));
    }

    mat operator + (mat a) const
    {
        mat ans(r, c);
        for (int i = 1; i <= r; i++)
        {
            for (int j = 1; j <= c; j++)
            {
                ans.m[i][j] = (m[i][j] + a.m[i][j]) % MOD;
            }
        }
        return ans;
    }

    mat operator * (mat a) const
    {
        mat tmp(r, a.c);
        for (int i = 1; i <= tmp.r; i++)
        {
            for (int j = 1; j <= tmp.c; j++)
            {
                tmp.m[i][j] = 0;
                for (int k = 1; k <= c; k++)
                {
                    tmp.m[i][j] = (tmp.m[i][j] + (m[i][k] * a.m[k][j]) % MOD) % MOD;
                }
            }
        }
        return tmp;
    }

    mat operator ^ (int n) const //注意运算符优先级比较低,多用括号;
    {
        mat ans(r, r), tmp(r, r);
        memcpy(tmp.m, m, sizeof(tmp.m));
        for (int i = 1; i <= ans.r; i++) ans.m[i][i] = 1;
        while(n)
        {
            if(n&1) ans = ans*tmp;
            tmp = tmp*tmp;
            n >>= 1;
        }
        return ans;
    }

    void print() const
    {
        for (int i = 1; i <= r; i++)
        {
            for (int j = 1; j <= c; j++)
            {
                printf("%lld",m[i][j]);
                if (j == c) printf("\n");
                else printf(" ");
            }
        }
    }

};
int main()
{
    int n;
    while (cin >> n && (n != -1))
    {
        mat A(3, 3);
        A.m[1][1] = 1; A.m[1][2] = 1;
        A.m[2][1] = 1; A.m[2][2] = 0;
        A = (A^n);
        cout << A.m[2][1] << endl;
    }
    return 0;
}
/*
0
9
999999999
1000000000
-1
*/

 

阅读更多

没有更多推荐了,返回首页