POJ ~ 3070 ~ Fibonacci (矩阵快速幂模板)

19人阅读 评论(0) 收藏 举报
分类:

题意:求斐波那契的第N项,f[0] = 0,f[1] = 1。对10000取余。


思路:模板题,模板题,模板题。


//#include <bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int MOD = 1e4;
struct mat
{
    int r, c;
    ll m[10][10];       

    mat (int r, int c)
    {
        this->r = r, this->c = c;
        memset(m, 0, sizeof(m));
    }

    mat operator + (mat a) const
    {
        mat ans(r, c);
        for (int i = 1; i <= r; i++)
        {
            for (int j = 1; j <= c; j++)
            {
                ans.m[i][j] = (m[i][j] + a.m[i][j]) % MOD;
            }
        }
        return ans;
    }

    mat operator * (mat a) const
    {
        mat tmp(r, a.c);
        for (int i = 1; i <= tmp.r; i++)
        {
            for (int j = 1; j <= tmp.c; j++)
            {
                tmp.m[i][j] = 0;
                for (int k = 1; k <= c; k++)
                {
                    tmp.m[i][j] = (tmp.m[i][j] + (m[i][k] * a.m[k][j]) % MOD) % MOD;
                }
            }
        }
        return tmp;
    }

    mat operator ^ (int n) const //注意运算符优先级比较低,多用括号;
    {
        mat ans(r, r), tmp(r, r);
        memcpy(tmp.m, m, sizeof(tmp.m));
        for (int i = 1; i <= ans.r; i++) ans.m[i][i] = 1;
        while(n)
        {
            if(n&1) ans = ans*tmp;
            tmp = tmp*tmp;
            n >>= 1;
        }
        return ans;
    }

    void print() const
    {
        for (int i = 1; i <= r; i++)
        {
            for (int j = 1; j <= c; j++)
            {
                printf("%lld",m[i][j]);
                if (j == c) printf("\n");
                else printf(" ");
            }
        }
    }

};
int main()
{
    int n;
    while (cin >> n && (n != -1))
    {
        mat A(3, 3);
        A.m[1][1] = 1; A.m[1][2] = 1;
        A.m[2][1] = 1; A.m[2][2] = 0;
        A = (A^n);
        cout << A.m[2][1] << endl;
    }
    return 0;
}
/*
0
9
999999999
1000000000
-1
*/

查看评论

POJ - 3070 - Fibonacci (矩阵快速幂 + 斐波那契数列)

Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10096   Acc...
  • u014355480
  • u014355480
  • 2015-03-26 23:17:25
  • 1698

POJ-3070--Fibonacci (大一版)

#include struct prog {     int a[2][2];     void init()     {         a[1][1]=a[0][1]=a[1][0]=1;    ...
  • u013050857
  • u013050857
  • 2014-10-11 12:11:39
  • 1182

POJ 3070(矩阵快速幂)

Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12195   Acc...
  • qq_24489717
  • qq_24489717
  • 2016-04-11 12:53:17
  • 718

poj 3070 Fibonacci,不用打表的快速斐波那契

Fibonacci 题目链接:点击打开链接 分析:以前用过快速幂,但是没想到还可以用在矩阵上,而且这么快,原理上和快速幂没有区别,只是乘法变成了矩阵的乘法。 代码如下: #include #inclu...
  • Singular__point
  • Singular__point
  • 2017-08-10 10:54:16
  • 160

POJ Fibonacci 3070【矩阵快速幂】

Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10931   Acc...
  • ydd97
  • ydd97
  • 2015-08-08 09:45:20
  • 822

[POJ3070]Fibonacci sequence——矩阵+快速幂

斐波那契数列题目描述 斐波那契数列是由如下递推式定义的数列 F0=0F_0=0 F1=1F_1=1 Fn+1=Fn+1+FnF_{n+1}=F_{n+1}+F_n 求这个数列第n项的值对10...
  • ccf15068475758
  • ccf15068475758
  • 2016-10-18 10:37:49
  • 688

矩阵快速幂 求斐波拉切数列的第n项 poj3070

Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7241 ...
  • tianyuhang123
  • tianyuhang123
  • 2017-03-08 17:48:10
  • 309

poj 3070 Fibonacci 【矩阵快速幂】

Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10072 Accepted: 7...
  • u014427196
  • u014427196
  • 2015-03-23 01:59:42
  • 572

POJ 3070:Fibonacci

Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15071   Acc...
  • wyxeainn
  • wyxeainn
  • 2017-05-30 11:53:11
  • 277

关于Fibonacci的解题报告

  • 2009年04月26日 12:06
  • 72KB
  • 下载
    个人资料
    持之以恒
    等级:
    访问量: 5万+
    积分: 4133
    排名: 9268
    最新评论