# POJ ~ 3041 ~ Asteroids （二分图 + 最小点覆盖）

Dinic解法：

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int MAXN = 1005;
const int INF = 0x3f3f3f3f;
struct Edge
{
int from, to, cap, flow;       //起点,终点,容量,流量
Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
int n, m, s, t;                //结点数,边数(包括反向弧),源点s,汇点t
vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN];           //邻接表，G[i][j]表示结点i的第j条边在edges数组中的序号
int d[MAXN];                   //从起点到i的距离（层数差）
int cur[MAXN];                 //当前弧下标
bool vis[MAXN];                //BFS分层使用

void init(int n)
{
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++) G[i].clear();
}

void add_edge(int from, int to, int cap)
{
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}

bool BFS()//构造分层网络
{
memset(vis, 0, sizeof(vis));
queue<int> Q;
d[s] = 0;
vis[s] = true;
Q.push(s);
while (!Q.empty())
{
int x = Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++)
{
Edge& e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow)
{
vis[e.to] = true;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a)//沿阻塞流增广
{
if (x == t || a == 0) return a;
int flow = 0, f;
for (int& i = cur[x]; i < G[x].size(); i++)//从上次考虑的弧
{
Edge& e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)//多路增广
{
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
int max_flow(int s, int t)
{
this->s = s; this->t = t;
int flow = 0;
while (BFS())
{
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
};
Dinic solve;
int main()
{
int n, k, s, t;
while (~scanf("%d%d", &n, &k))
{
solve.init(2*n+1);
s = 0, t = 2*n+1;
for (int i = 1; i <= n; i++) solve.add_edge(s, i, 1);
for (int i = 1; i <= n; i++) solve.add_edge(i+n, t, 1);
while (k--)
{
int x, y; scanf("%d%d", &x, &y);
}
int ans = solve.max_flow(s, t);
printf("%d\n", ans);
}
return 0;
}
/*
3 4
1 1
1 3
2 2
3 2
*/