POJ ~ 2446 ~ Chessboard (二分图匹配 + 奇偶性建图)

11人阅读 评论(0) 收藏 举报
分类:

题意:输入三个数字m,n,k。表示m*n的图中有k个洞,然后输入这k个洞的坐标(y,x),y表示列,x表示行。问拿1*2的木块去是否能铺满这个图,木块不允许覆盖,有洞的地方不允许放。


思路:打死我也想不到这是二分图匹配问题。首先图中的点可以分为两部分,(i+j)为偶数的点,(i+j)为奇数的点,铺砖其实就相当于如果选择一个奇数点那么一定要选择一个偶数点。这样这个图就分为了两部分,奇数点集合,偶数点集合,建边呢就是奇数点到相邻的偶数点建边,偶数点到相邻的奇数点建边。

建边的时候有一个优化:如果按上述方法建边会建立很多重复的边导致复杂度上升。我们让每个点都跟他的左边那个点和上边那个点去建边就好了,但是一定要确保边都是从奇数点到偶数点(或偶数点到奇数点的),要保持一致。

对于n*m-k为奇数时,一定不行,因为木块为2。



最大流解法:建立超级源和超级汇,超级源到奇数点建边,超级汇到偶数点建边。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int MAXN = 35*35;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int from, to, cap, flow;       //起点,终点,容量,流量
    Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
    int n, m, s, t;                //结点数,边数(包括反向弧),源点s,汇点t
    vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];           //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    int d[MAXN];                   //从起点到i的距离(层数差)
    int cur[MAXN];                 //当前弧下标
    bool vis[MAXN];                //BFS分层使用

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }

    void add_edge(int from, int to, int cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }

    bool BFS()//构造分层网络
    {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        d[s] = 0;
        vis[s] = true;
        Q.push(s);
        while (!Q.empty())
        {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = true;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a)//沿阻塞流增广
    {
        if (x == t || a == 0) return a;
        int flow = 0, f;
        for (int& i = cur[x]; i < G[x].size(); i++)//从上次考虑的弧
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)//多路增广
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
    int max_flow(int s, int t)
    {
        this->s = s; this->t = t;
        int flow = 0;
        while (BFS())
        {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }
};
Dinic solve;
int main()
{
    int n, m, k;
    bool vis[MAXN][MAXN];
    while (~scanf("%d%d%d", &n, &m, &k))
    {
        if ((n*m-k)&1) { printf("NO\n"); continue; }//奇数个点一定不行
        solve.init(n*m+1);
        memset(vis, 0, sizeof(vis));
        for (int i = 0; i < k; i++)
        {
            int x, y; scanf("%d%d", &y, &x);
            vis[x][y] = true;
        }
        int s = 0, t = n*m+1;
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= m; j++)
            {
                if (vis[i][j]) continue;
                if((i+j)&1)
                {
                    solve.add_edge(s, i*n+j, 1); //超级源到奇数点
                    if (!vis[i][j-1] && j-1 > 0) solve.add_edge(i*n+j, i*n+j-1, 1);//左
                    if (!vis[i-1][j] && i-1 > 0) solve.add_edge(i*n+j, (i-1)*n+j, 1);//上
                }
                else
                {
                    if (!vis[i][j-1] && j-1 > 0) solve.add_edge(i*n+j-1, i*n+j, 1);//左
                    if (!vis[i-1][j] && i-1 > 0) solve.add_edge((i-1)*n+j, i*n+j, 1);//上
                    solve.add_edge(i*n+j, t, 1); //偶数点到超级汇
                }
            }
        }
        int ans = solve.max_flow(s, t);
        if (ans == (n*m-k)/2) printf("YES\n");
        else printf("NO\n");
    }
    return 0;
}
/*
4 3 2
2 1
3 3
*/




查看评论

MFC浅析(7) CWnd类虚函数的调用时机、缺省实现

CWnd类虚函数的调用时机、缺省实现
  • FMD
  • FMD
  • 2001-06-16 13:12:00
  • 3090

poj 2446 Chessboard(二分图最大匹配)

Chessboard Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16624   Ac...
  • acm_cxq
  • acm_cxq
  • 2016-07-27 09:57:38
  • 212

POJ 2446 Chessboard(二分图-网格图构图)

http://poj.org/problem?id=2446 这道题,十分的妙啊。我一开始死活想不出到底怎么做,这竟然是二分图???我往这方面想也没有结果。后来在网上看到了二分图常用的建图技巧,我看...
  • llzhh
  • llzhh
  • 2017-05-02 17:43:11
  • 253

POJ-2446 Chessboard

题目链接:http://poj.org/problem?id=2446 题目大意: 给你一个m*n的棋盘,其中有k个小洞,现在给你1*2的纸片,如果能恰好覆盖没有洞的全部格子,而且每个格子不能被覆...
  • niushuai666
  • niushuai666
  • 2011-12-01 15:56:22
  • 3087

poj_2446 Chessboard匈牙利算法

思路:
  • yeruby
  • yeruby
  • 2014-09-26 10:36:28
  • 676

POJ2446--Chessboard

Description Alice and Bob often play games on chessboard. One day, Alice draws a board with size ...
  • a305657
  • a305657
  • 2013-08-01 13:34:27
  • 698

POJ2446 Chessboard(二分图)

题意: 一个n*m的棋盘上有t个坑,要求用1*2的纸条完全覆盖这个棋盘,纸条不能盖上坑。 要点: 这题是二分图,就是求二分图的最大匹配,看是否与棋盘格子数-坑数相等。但是具体的集合很难想,看了网...
  • SeasonJoe
  • SeasonJoe
  • 2016-06-05 10:06:22
  • 233

POJ 2446 Chessboard(二分图匹配)

题目大意: 首先输入m,n,k,表示一个m*n的格子,ranho
  • u011643500
  • u011643500
  • 2014-04-09 10:51:54
  • 397

POJ 2446 Chessboard (二分图匹配)

POJ 2446 Chessboard (二分图匹配)
  • u012860063
  • u012860063
  • 2014-02-26 22:32:00
  • 1034

POJ - 2446 Chessboard (二分图匹配)

题目链接:点击打开链接 题意:一个棋盘,n*m的大小,棋盘上有一些窟窿,让你往棋盘上放1*2的长方形。横着放,竖着放都可以,但是窟窿的地方不能放,只要你能填满棋盘就输出YES,填不满就输出NO。 题解...
  • PK__PK
  • PK__PK
  • 2018-04-16 17:55:06
  • 5
    个人资料
    持之以恒
    等级:
    访问量: 5万+
    积分: 4164
    排名: 9020
    最新评论