# POJ ~ 2446 ~ Chessboard （二分图匹配 + 奇偶性建图）

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;

const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;

struct Edge
{
int from, to, cap, flow;       //起点,终点,容量,流量
Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
int n, m, s, t;                //结点数,边数(包括反向弧),源点s,汇点t
vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN];           //邻接表，G[i][j]表示结点i的第j条边在edges数组中的序号
int d[MAXN];                   //从起点到i的距离（层数差）
int cur[MAXN];                 //当前弧下标
bool vis[MAXN];                //BFS分层使用

void init(int n)
{
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++) G[i].clear();
}

void AddEdge(int from, int to, int cap)
{
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}

bool BFS()//构造分层网络
{
memset(vis, 0, sizeof(vis));
queue<int> Q;
d[s] = 0;
vis[s] = true;
Q.push(s);
while (!Q.empty())
{
int x = Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++)
{
Edge& e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow)
{
vis[e.to] = true;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}

int DFS(int x, int a)//沿阻塞流增广
{
if (x == t || a == 0) return a;
int flow = 0, f;
for (int& i = cur[x]; i < G[x].size(); i++)//从上次考虑的弧
{
Edge& e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)//多路增广
{
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}

int MaxFlow(int s, int t)
{
this->s = s; this->t = t;
int flow = 0;
while (BFS())
{
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}

}solve;

const int maxn = 35;
const int dx[] = {0, 1, 0, -1};
const int dy[] = {1, 0, -1, 0};
int n, m, K;
bool vis[maxn][maxn];

int main()
{
while (~scanf("%d%d%d", &n, &m, &K))
{
if ((n*m-K)&1) { printf("NO\n"); continue; }
memset(vis, 0, sizeof(vis));
for (int i = 0; i < K; i++)
{
int x, y; scanf("%d%d", &y, &x); y--; x--;
vis[x][y] = true;
}
int s = n*m, t = n*m+1;
solve.init(t);
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
if (vis[i][j]) continue;
if((i+j)&1)
{
for (int k = 0; k < 4; k++)
{
int X = i+dx[k], Y = j+dy[k];
if (X >= 0 && X < n && Y >= 0 && Y < m && !vis[X][Y])
{
}
}
}
else
{
}
}
}
int ans = solve.MaxFlow(s, t);
if (ans == (n*m-K)/2) printf("YES\n");
else printf("NO\n");
}
return 0;
}
/*
4 3 2
2 1
3 3
*/