element-plus的Tree 树形控件添加图标 该文章为本菜鸡学习记录,如有错误还请大佬指教本人刚开始接触vue框架,在使用element-plus组件想实现树形控件,发现官网的组件示例没有图标区分显示。
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn 这个是因为没有将requires_grad设为True,l=LOSS(out,label)中的l默认是requires_grad为false,这个l其实也是一个张量Tensor类型,将其的requires_grad改为True后,使用backward函数就可以得到requires_grad为True的所有参数的梯度。在loss.backward()之前添加loss.requires_grad_()...
pytorch中with torch.no_grad(): && model.eval() with是python中上下文管理器,简单理解,当要进行固定的进入,返回操作时,可以将对应需要的操作,放在with所需要的语句中。比如文件的写入(需要打开关闭文件)等。以下为一个文件写入使用with的例子。后部分,可以将with后的语句运行,将其返回结果给到as后的变量(sh),之后的代码块对close进行操作。...
pytorch优化器: optim.SGD && optimizer.zero_grad() 在神经网络优化器中,主要为了优化我们的神经网络,使神经网络在我们的训练过程中快起来,节省时间。在pytorch中提供了torch.optim方法优化我们的神经网络,torch.optim是实现各种优化算法的包。最常用的方法都已经支持,接口很常规,所以以后也可以很容易地集成更复杂的方法。要使用torch.optim,你必须构造一个optimizer对象,这个对象能保存当前的参数状态并且基于计算梯度进行更新。...
【pip install】ERROR: Cannot uninstall ‘xx‘. It is a distutils installed project 的解决办法 今天在安装audtorch使用pip install audtorch进行安装时,报错:ERROR: Cannot uninstall ‘packaging’. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.【万能语法】如果以后遇到ERROR: Cannot un
机器学习:self-paced 和 fine-tuning 在实践中,由于数据集不够大,很少有人从头开始训练网络。常见的做法是使用预训练的网络(例如在ImageNet上训练的分类1000类的网络)来重新fine-tuning(也叫微调),或者当做特征提取器。以下是常见的两类迁移学习场景:1 卷积网络当做特征提取器。使用在ImageNet上预训练的网络,去掉最后的全连接层,剩余部分当做特征提取器(例如AlexNet在最后分类器前,是4096维的特征向量)。这样提取的特征叫做CNN codes。得到这样的特征后,可以使用线性分类器(Liner SVM、Softm
pytorch之model.cuda()、model.train()和model.eval() 在pytorch中,即使是有GPU的机器,它也不会自动使用GPU,而是需要在程序中显示指定。调用model.cuda(),可以将模型加载到GPU上去。启用 BatchNormalization 和 Dropout不启用 BatchNormalization 和 DropoutPyTorch进行训练和测试时一定注意要把实例化的model指定train/evaleval()时,框架会自动把 BN 和 DropOut 固定住,不会取平均,而是用训练好的值,不然的话,一旦test的batch_size过小,很容易
解决错误:AttributeError:model ’torch.jit. has no attribute ‘unused‘ 导入torchvision出现:AttributeError: module ‘torch.jit’ has no attribute 'unused’错误报错截图:网上查找资料得,错误原因说由于torch和torchvision的 版本导致的该错误。加载对应的pytorch和torchvision本人使用torch== 1.14.0,需加载torchvision== 0.5.0...
ArcGIS10.2 安装教程 1、双击安装包中ArcGIS10.2文件下的ESRI应用程序(图1),进入ArcGIS for Desktop窗口;2.选择ArcGIS License Manager,单击Setup进行安装(图2);3、点击Next;选择I acceptthe license agreement,单击Next4、选择默认安装位置或是自定义安装位置,单击Next;单击Install进行安装,安装完成后点击Finish; 生成“ArcGIS License Server Administrator -10.2”
TypeError: load() missing 1 required positional argument: ‘Loader‘解决方案 2.原因:查询相关资料发现,Yaml 5.1版本后就舍弃了 yaml.load(file) 这个用法。Yaml 5.1版本之后为使得load函数的安全性得以提高,就修改了需要指定Loader,通过默认加载器(FullLoader)禁止执行任意函数。有三种解决办法(三选一即可):4.实例:
错误解决:There is no screen to be resumed matching 网络中断后,使用screen -r **(id)重新进行连接程序界面时出现There is no screen to be resumed matching错误。之前的screen还处于打开状态(同一个screen不能打开多次),所以无法再次打开。错误如下:首先在终端输入screen -d **(id)先退出,等断开连接后再输入screen -r **(id)重新进行连接
python pip报错:Could not fetch URL...或 Could not find a version that satisfies the requirement ever…… python pip报错:Could not fetch URL…这里使用的是python3.6。安装tensorboardX时报错Could not fetch URL…(忘记截图了TAT)这时可以考虑用国内的镜像源来加速,方式如下:pip install tensorboardX -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com然后就超速加载好了!!这里的tensorboardX换成自己想要加载的库就可以了
AttributeError: module ‘pip‘ has no attribute ‘main‘问题解决方法 AttributeError: module ‘pip’ has no attribute 'main’问题解决方法环境信息:python3.6.5 (64位)、pip10.0.1错误原因:由于pip 10版本中没有main(),解决方法:降级pip的版本提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。...
python引入文件夹中的文件 此文章为菜鸡学习记录,如有错误不足,还请大佬指正文章目录一、引入同一目录下的py文件二、引入不同目录下的文件1、 调用子目录下的文件2、导入上级目录下的文件关于 _ _ init_ _.py在写python程序的时候,经常会用到引用其他的.py文件,如何使用import进行引入,下面将进行介绍:一、引入同一目录下的py文件如下图,main.py和deeplabv2.py在同一个文件夹内-|model -|deeplabv2.py -|main.py如果想在main.py文件内引入d.
conda将python环境打包并移植到另一个linux服务器中,解决CommandNotFoundError 本文为菜鸡学习记录,如果错误还请1.打包python环境首先查看到需要打包的环境文件的所在位置:conda env list进入到文件夹所在位置后,进行打包操作2.将压缩后的文件传输到所需要的服务器中这里我是有两台linux服务器,我自己使用的是windows平台,使用xftp先从第一个服务器上把压缩包传输到windows上,然后再传输到另一个服务器的conda下的envs目录下。3.解压缩.tar.bz2 :创建文件:py36,因为我们是要将压缩文件解压到py36中,这个创建的.
论文笔记&&网络复现:Learning to Adapt Structured Output Space for Semantic Segmentation 最近阅读了一篇论文,介绍了一个语义分割中比较小众的研究方向——域自适应(Unsupervised Domain Adaptation,UDA)。小众并不意味着不重要,相反,语义分割中域自适应是一个很有意义的研究,尤其是在遥感图像处理领域。文章为2018年CVPR中的一篇经典文章,较少了语义分割UDA几大研究领域中的一个方向——基于对抗学习的UDA。论文地址:https://arxiv.org/abs/1802.10349代码地址:https://github.com/wasidennis/Adapt.
机器学习里面的Ground Truth是什么意思 今天在看文献的时候看到Ground Truth这个词汇,不是很理解其中的含义,看到一篇大佬的文章,醍醐灌顶,以此记录分享一下。版权声明:本文为CSDN博主「敲代码的quant」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/FrankieHello/article/details/80486167在看英文文献的时候,经常会看到Ground Truth这个词汇,翻译的意思是地面实况,放到机器学习里面,再抽象点可以.
机器学习:Gan(生成对抗网络) 版权声明:本文为CSDN博主「意念回复」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/weixin_39910711/article/details/123610198版权声明:本文为CSDN博主「bashendixie5」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/bashendixie5/article/detail.