数字图像处理——信用卡数字识别

本文介绍了使用OpenCV进行数字图像处理,实现信用卡数字识别的过程。通过模板匹配、轮廓检测、阈值处理和边缘检测等技术,逐步筛选并识别出信用卡上的数字,最终成功划分并识别出卡号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

© Fu Xianjun. All Rights Reserved


重点:

模板匹配、轮廓检测、阈值处理、边缘检测

原图:

1.导包:

import cv2
import numpy as np
def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

2.框选图像中的数字部分

def sort_contours(cnts, method="left-to-right"):
    reverse = False
    i = 0

    if method == "right-to-left" or method == "bottom-to-top":
        reverse = True

    if method == "top-to-bottom" or method == "bottom-to-top":
        i = 1
    boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一个最小的矩形,把找到的形状包起来x,y,h,w
    (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
                                        key=lambda b: b[1][i], reverse=reverse))

    return cnts, boundingBoxes
# 读取模板图片
template = cv2.imread('ocr_a_reference.png')
cv_show('template', template)
# 模板图片灰度化。这里的模板图片本身就是二值化的因此没有明显区别。
template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
cv_show('templage_gray', template_gray)
# 二值化,转化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值