这题一开始使用常规的素数求法发现会超时,最后选择了埃氏筛法。
#include<vector>
#include<iostream>
#include<algorithm>
#include<string>
#include<map>
using namespace std;
vector<bool>vec;//用于埃氏筛的向量
vector<long long>primeNums;//存放需要的素数
map<long long,int>m;//用map来记录各个素数用到的次数
//线性筛
long long prime(long long n){
vec[0]=false;
vec[1]=false;
for(int i=2;i*i<=n;i++){
//此处循环用于减小计算素数的范围
while(n>i&&n%i==0){
n/=i;
}
//埃氏筛
if(vec[i]==true){
for(int j=2*i;j<=n;j+=i){
vec[j]=false;
}
}
}
//将求出的素数存入向量
for(int i=0;i<=n;i++){
if(vec[i]){
primeNums.push_back(i);
}
}
return primeNums.size();//返回向量的大小
}
int main(){
long long num;
cin>>num;
//输入1时需要特判
if(num==1){
cout<<"1=1"<<endl;
return 0;
}
//重构向量长度
vec.resize(num+1,true);
//求出可能用到的素数
long long len=prime(num);
// for(auto i:primeNums){
// cout<<i<<" ";
// }
string res= to_string(num)+"=";
//计算各个素数用到的次数
while(num>1){
for(int i=0;i<len;i++){
while(num%primeNums[i]==0){
m[primeNums[i]]++;
num/= primeNums[i];
}
}
}
// for(auto it:m){
// cout<<it.first<<" "<<it.second<<endl;
// }
//构造答案
int cnt=0;
for(auto it:m){
if(it.second!=1){
res=res+ to_string(it.first)+"^"+ to_string(it.second);
}
else{
res=res+ to_string(it.first);
}
cnt++;
if(cnt<m.size()){
res=res+"*";
}
}
cout<<res<<endl;
return 0;
}
测试结果

最后测试时发现结果还是接近超时,需要寻找一种时间复杂度更低的算法。
补充一种筛法
vector<int>isprime, primes;
void sieve(int n){
isprime.assign(n+1,1);
isprime[0]=isprime[1]=1;
for(int i=2;i<=n;i++){
if(isprime[i]){
primes.push_back(i);
}
for(auto p:primes){
if(i*p>n){
break;
}
isprime[i*p]=0;
if(i%p==0){
break;
}
}
}
}

本文探讨了在处理大整数素数分解时遇到的超时问题,作者首先尝试了常规的素数求法,但发现效率低下。接着,作者转向使用埃氏筛法实现线性筛,有效减少了计算素数的范围。然而,即使如此,程序在测试时仍接近超时。文章最后提出了一种改进的筛法,通过动态维护素数及其倍数的标记,进一步优化了算法。尽管这种方法在一定程度上提高了效率,但仍然存在时间复杂度的问题,暗示可能需要更高级的算法来完全解决问题。

被折叠的 条评论
为什么被折叠?



