牛客NC21740移动石头(C++)

本文介绍了如何使用C++编写程序,计算两个输入数组a和b的元素差值,找出需要移动的石头数量,当两数组总和不相等时返回-1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接
在这里插入图片描述
在这里插入图片描述
实现方法

  1. 读取数据时分别计算两个数组的总和,若不相等输出-1;
  2. 计算每两堆石头之间的差值,该差值就是需要移动的数量;
  3. 将差值的绝对值计入总和,并将差值与下一个差值相加;

代码

#include <bits/stdc++.h>
using namespace std;

int a[55],b[55],c[55];

signed main() {
    int n;
    cin>>n;
    int suma=0,sumb=0;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        suma+=a[i];
    }
    for(int i=1;i<=n;i++){
        cin>>b[i];
        sumb+=b[i];
        c[i]=b[i]-a[i];
    }
    if(suma!=sumb)return cout<<-1,0;
    int res=0;
    for(int i=1;i<=n-1;i++){
        c[i+1]+=c[i];
        res+=abs(c[i]);
    }
    cout<<res;
    return 0;
}
做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
### NC200369 四舍五入 解题思路 对于给定的小数字符串,需要按照指定的次数 `t` 进行四舍五入操作。每次四舍五入都是基于当前最右边的一位小数来决定是否进位。 #### 思路分析 1. **初始化处理** - 首先读取输入数据并解析成可操作的形式。 - 将原始分数转换为字符列表以便逐位修改[^2]。 2. **核心逻辑** - 对于每一次四舍五入: - 如果当前位置小于等于4,则直接截断后续部分; - 若大于等于5则向前一位加一,并继续检查前一位是否会再次触发进位直到不再发生为止。 - 更新剩余需处理的有效位数计数器 `t`,当其减至零时停止循环。 3. **特殊情况考虑** - 当所有有效数字都被处理完毕但仍存在未完成的四舍五入需求时,在结果前面补上相应数量的'1'。 #### 代码实现 以下是 Python 实现: ```python def round_number(n, t, num_str): # 转换为list方便操作 nums = list(num_str) dot_index = nums.index('.') start_pos = dot_index + min(t, len(nums) - 1) while t > 0 and '.' not in str(start_pos): current_digit = int(nums[start_pos]) if current_digit >= 5: carry = True for i in range(start_pos - 1, -1, -1): if nums[i].isdigit(): next_digit = (int(nums[i]) + 1) % 10 if next_digit != 0 or i == 0: carry = False nums[i] = str(next_digit) break if carry: nums.insert(0, '1') del nums[start_pos:] t -= 1 try: start_pos = max(dot_index + min(t, len(nums) - dot_index - 1), 0) except ValueError as e: pass result = ''.join([str(x) for x in nums]).rstrip('0').rstrip('.') or "0" return result if __name__ == "__main__": n, t = map(int, input().split()) initial_score = input() print(round_number(n, t, initial_score)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值