1086. Tree Traversals Again (25)
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:6 Push 1 Push 2 Push 3 Pop Pop Push 4 Pop Pop Push 5 Push 6 Pop PopSample Output:
3 4 2 6 5 1
分析:栈实现的是二叉树的中序遍历(左根右),而每次push入值的顺序是二叉树的前序遍历(根左右),所以该题可以用二叉树前序和中序转后序的方法做~~
root为当前子树的根结点在前序pre中的下标,start和end为当前子树的最左边和最右边的结点在中序in中的下标。用i找到当前子树的根结点root在中序中的下标,然后左边和右边就分别为当前根结点root的左子树和右子树。递归实现~
#include <cstdio>
#include <vector>
#include <stack>
#include <cstring>
using namespace std;
vector<int> pre, in, post;
void postorder(int root, int start, int end) {
if(start > end) return ;
int i = start;
while(i < end && in[i] != pre[root]) i++;
postorder(root + 1, start, i - 1);
postorder(root + 1 + i - start, i + 1, end);
post.push_back(pre[root]);
}
int main() {
int n;
scanf("%d", &n);
char str[5];
stack<int> s;
while(~scanf("%s", str)) {
if(strlen(str) == 4) {
int num;
scanf("%d", &num);
pre.push_back(num);
s.push(num);
} else {
in.push_back(s.top());
s.pop();
}
}
postorder(0, 0, n - 1);
printf("%d", post[0]);
for(int i = 1; i < n; i++)
printf(" %d", post[i]);
return 0;
}