Java8新特性之三:Stream API

Java8的两个重大改变,一个是Lambda表达式,另一个就是本节要讲的Stream API表达式。Stream 是Java8中处理集合的关键抽象概念,它可以对集合进行非常复杂的查找、过滤、筛选等操作,在新版的JPA中,也已经加入了Stream。如:

@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();

Stream<User> readAllByFirstnameNotNull();

@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);

Stream API给我们操作集合带来了强大的功用,同时Stream API操作简单,容易上手。

1、Stream的操作步骤

Stream有如下三个操作步骤:

一、创建Stream

从一个数据源,如集合、数组中获取流。

二、中间操作

一个操作的中间链,对数据源的数据进行操作。

三、终止操作

一个终止操作,执行中间操作链,并产生结果。

要注意的是,对流的操作完成后需要进行关闭操作(或者用JAVA7的try-with-resources)。

举个简单的例子:

假设有一个Person类和一个Person列表,现在有两个需求:1)找到年龄大于18岁的人并输出;2)找出所有中国人的数量。

@Data
class Person {
    private String name;
    private Integer age;
    private String country;
    private char sex;

    public Person(String name, Integer age, String country, char sex) {
        this.name = name;
        this.age = age;
        this.country = country;
        this.sex = sex;
    }
}
List<Person> personList = new ArrayList<>();
personList.add(new Person("欧阳雪",18,"中国",'F'));
personList.add(new Person("Tom",24,"美国",'M'));
personList.add(new Person("Harley",22,"英国",'F'));
personList.add(new Person("向天笑",20,"中国",'M'));
personList.add(new Person("李康",22,"中国",'M'));
personList.add(new Person("小梅",20,"中国",'F'));
personList.add(new Person("何雪",21,"中国",'F'));
personList.add(new Person("李康",22,"中国",'M'));

在JDK8以前,我们可以通过遍历列表来完成。但是在有了Stream API后,可以这样来实现:

public static void main(String[] args) {

    // 1)找到年龄大于18岁的人并输出;
    personList.stream().filter((p) -> p.getAge() > 18).forEach(System.out::println);

    System.out.println("-------------------------------------------");

    // 2)找出所有中国人的数量
    long chinaPersonNum = personList.stream().filter((p) -> p.getCountry().equals("中国")).count();
    System.out.println("中国人有:" + chinaPersonNum + "个");
}

输出结果:

Person(name=Tom, age=24, country=美国, sex=M)
Person(name=Harley, age=22, country=英国, sex=F)
Person(name=向天笑, age=20, country=中国, sex=M)
Person(name=李康, age=22, country=中国, sex=M)
Person(name=小梅, age=20, country=中国, sex=F)
Person(name=何雪, age=21, country=中国, sex=F)
Person(name=李康, age=22, country=中国, sex=M)
-------------------------------------------
中国人有:6

在这个例子中,personList.stream()是创建流,filter()属于中间操作,forEach、count()是终止操作。

2、Stream中间操作–筛选与切片

  • filter:接收Lambda,从流中排除某些操作;
  • limit:截断流,使其元素不超过给定对象
  • skip(n):跳过元素,返回一个扔掉了前n个元素的流,若流中元素不足n个,则返回一个空流,与limit(n)互补
  • distinct:筛选,通过流所生成元素的hashCode()和equals()去除重复元素。

2.1 limit举例

需求,从Person列表中取出两个女性。

personList.stream().filter((p) -> p.getSex() == 'F').limit(2).forEach(System.out::println);

输出结果为:

Person(name=欧阳雪, age=18, country=中国, sex=F)
Person(name=Harley, age=22, country=英国, sex=F)

2.2 skip举例

从Person列表中从第2个女性开始,取出所有的女性。

personList.stream().filter(§ -> p.getSex() == ‘F’).skip(1).forEach(System.out::println);

输出结果为:

Person(name=Harley, age=22, country=英国, sex=F)
Person(name=小梅, age=20, country=中国, sex=F)
Person(name=何雪, age=21, country=中国, sex=F)
2.3 distinct举例
personList.stream().filter(§ -> p.getSex() == ‘M’).distinct().forEach(System.out::println);

输出结果为:

Person(name=Tom, age=24, country=美国, sex=M)
Person(name=向天笑, age=20, country=中国, sex=M)
Person(name=李康, age=22, country=中国, sex=M)

男性中有两个李康,去除掉了一个重复的。

3、Stream中间操作–映射

  • map–接收Lambda,将元素转换成其他形式或提取信息。接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
  • flatMap–接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流

3.1 map举例

例1:比如,我们用一个PersonCountry类来接收所有的国家信息:

@Data
class PersonCountry {
    private String country;
}


personList.stream().map((p) -> {
       PersonCountry personName = new PersonCountry();
       personName.setCountry(p.getCountry());
       return personName;
}).distinct().forEach(System.out::println);

输出结果为:

PersonName(country=中国)
PersonName(country=美国)
PersonName(country=英国)

例2:假如有一个字符列表,需要提出每一个字符

 List<String> list = Arrays.asList("aaa","bbb","ccc","ddd","ddd");

代码如下:

根据字符串获取字符方法:

public static Stream<Character> getCharacterByString(String str) {

    List<Character> characterList = new ArrayList<>();

    for (Character character : str.toCharArray()) {
        characterList.add(character);
    }

    return characterList.stream();
}
List<String> list = Arrays.asList("aaa","bbb","ccc","ddd","ddd");
 
final Stream<Stream<Character>> streamStream
        = list.stream().map(TestStreamAPI::getCharacterByString);
streamStream.forEach(System.out::println);

运行结果:

java.util.stream.ReferencePipeline$Head@3f91beef
java.util.stream.ReferencePipeline$Head@1a6c5a9e
java.util.stream.ReferencePipeline$Head@37bba400
java.util.stream.ReferencePipeline$Head@179d3b25
java.util.stream.ReferencePipeline$Head@254989ff

从输出结果及返回结果类型(Stream<Stream>)可以看出这是一个流中流,要想打印出我们想要的结果,需要对流中的每个流进行打印:

streamStream.forEach(sm -> sm.forEach(System.out::print));

运行结果为:

aaabbbcccdddddd

但我们希望的是返回的是一个流,而不是一个包含了多个流的流,而flatMap可以帮助我们做到这一点。

3.2 flatMap举例

改写上面的方法,将map改成flatMap:

final Stream<Character> characterStream = list.stream().flatMap(TestStreamAPI::getCharacterByString);
characterStream.forEach(System.out::print);

运行结果为:

aaabbbcccdddddd

3 map和flatMap的图解

map图解:
在这里插入图片描述
map在接收到流后,直接将Stream放入到一个Stream中,最终整体返回一个包含了多个Stream的Stream。

flatMap图解:
在这里插入图片描述
flatMap在接收到Stream后,会将接收到的Stream中的每个元素取出来放入一个Stream中,最后将一个包含多个元素的Stream返回。

ps:图画得丑,将就一下。

4、Stream中间操作–排序

  • sorted()–自然排序(Comparable)
  • sorted(Comparator com)–定制排序(Comparator)

自然排序比较好理解,这里只讲一下定制排序,对前面的personList按年龄从小到大排序,年龄相同,则再按姓名排序:

final Stream<Person> sorted = personList.stream().sorted((p1, p2) -> {

    if (p1.getAge().equals(p2.getAge())) {
        return p1.getName().compareTo(p2.getName());
    } else {
        return p1.getAge().compareTo(p2.getAge());
    }
});
sorted.forEach(System.out::println);

运行结果:

Person(name=欧阳雪, age=18, country=中国, sex=F)
Person(name=向天笑, age=20, country=中国, sex=M)
Person(name=小梅, age=20, country=中国, sex=F)
Person(name=何雪, age=21, country=中国, sex=F)
Person(name=Harley, age=22, country=英国, sex=F)
Person(name=李康, age=22, country=中国, sex=M)
Person(name=李康, age=22, country=中国, sex=M)
Person(name=Tom, age=24, country=美国, sex=M)

5、终止操作–查找与匹配

  • allMatch–检查是否匹配所有元素
  • anyMatch–检查是否至少匹配一个元素
  • noneMatch–检查是否没有匹配所有元素
  • findFirst–返回第一个元素
  • findAny–返回当前流中的任意元素
  • count–返回流中元素的总个数
  • max–返回流中最大值
  • min–返回流中最小值

这些方面在Stream类中都有说明,这里不一一举例,只对allMatch、max各举一例进行说明。

4.1 allMatch

判断personList中的人是否都是成年人:

final boolean adult = personList.stream().allMatch(p -> p.getAge() >= 18);
System.out.println("是否都是成年人:" + adult);

final boolean chinaese = personList.stream().allMatch(p -> p.getCountry().equals("中国"));
System.out.println("是否都是中国人:" + chinaese);

运行结果:

是否都是成年人:true
是否都是中国人:false

4.1 max min

final Optional<Person> maxAge = personList.stream().max((p1, p2) -> p1.getAge().compareTo(p2.getAge()));
System.out.println("年龄最大的人信息:" + maxAge.get());

final Optional<Person> minAge = personList.stream().min((p1, p2) -> p1.getAge().compareTo(p2.getAge()));
System.out.println(“年龄最小的人信息:” + minAge.get());

运行结果:

年龄最大的人信息:Person(name=Tom, age=24, country=美国, sex=M)
年龄最小的人信息:Person(name=欧阳雪, age=18, country=中国, sex=F)

5、归约

Stream API的归约操作可以将流中元素反复结合起来,得到一个值,有:

Optional<T> reduce(BinaryOperator<T> accumulator);

T reduce(T identity, BinaryOperator<T> accumulator);

<U> U reduce(U identity,
                 BiFunction<U, ? super T, U> accumulator,
                 BinaryOperator<U> combiner);

5.1 求一个1到100的和

List<Integer> integerList = new ArrayList<>(100);
for(int i = 1;i <= 100;i++) {
    integerList.add(i);
}
final Integer reduce = integerList.stream().reduce(0, (x, y) -> x + y);
System.out.println("结果为:" + reduce);
结果为:5050

这个例子用到了reduce第二个方法:T reduce(T identity, BinaryOperator accumulator)

把这个动作拆解一下,其运算步骤模拟如下:

(1,2) -> 1 + 2 + 0     
(3,4) -> 3 + 4 + 3
(5,6) -> 5 + 6 + 10
.
.
.

其运算步骤是,每次将列表的两个元素相加,并将结果与前一次的两个元素的相加结果进行累加,因此,在开始时,将identity设为0,因为第1个元素和第2个元素在相加的时候,前面还没有元素操作过。

5.2 求所有人的年龄之和

final Optional<Integer> reduce = personList.stream().map(Person::getAge).reduce(Integer::sum);
System.out.println("年龄总和:" + reduce);
年龄总和:169

6、收集

collect:将流转换为其他形式,接收一个Collector接口实现 ,用于给Stream中汇总的方法

<R, A> R collect(Collector<? super T, A, R> collector);

<R> R collect(Supplier<R> supplier,
                  BiConsumer<R, ? super T> accumulator,
                  BiConsumer<R, R> combiner);

collect不光可以将流转换成其他集合等形式,还可以进行归约等操作,具体实现也很简单,主要是与Collectors类搭配使用。

6.1 改写3.1 map举例中的的例子,将国家收集起来转换成List

final List<String> collect = personList.stream().map(p -> p.getCountry()).distinct().collect(Collectors.toList());
        System.out.println(collect);
输出结果:

[中国, 美国, 英国]

6.2 计算出平均年龄

final Double collect1 = personList.stream().collect(Collectors.averagingInt(p -> p.getAge()));
System.out.println("平均年龄为:" + collect1);
输出结果:

平均年龄为:21.125

6.3 找出最小年龄、最大年龄

final Optional<Integer> maxAge2 = personList.stream().map(Person::getAge).collect(Collectors.maxBy(Integer::compareTo));
System.out.println(maxAge2.get());
最小年龄类型。

还有其他很操作,可以参考java.util.stream.Collectors

7、 注意流的关闭

try(final Stream<Integer> integerStream = personList.stream().map(Person::getAge)) {
   final Optional<Integer> minAge = integerStream.collect(Collectors.minBy(Integer::compareTo));
   System.out.println(minAge.get());
}

最好将流的操作放到try-with-resources,本章前面内容为了方便,没有放到try-with-resources中。

8、 完整测试代码

import lombok.Data;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Optional;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class TestStreamAPI {

    public static void main(String[] args) {
        List<Person> personList = new ArrayList<>();
        personList.add(new Person("欧阳雪",18,"中国",'F'));
        personList.add(new Person("Tom",24,"美国",'M'));
        personList.add(new Person("Harley",22,"英国",'F'));
        personList.add(new Person("向天笑",20,"中国",'M'));
        personList.add(new Person("李康",22,"中国",'M'));
        personList.add(new Person("小梅",20,"中国",'F'));
        personList.add(new Person("何雪",21,"中国",'F'));
        personList.add(new Person("李康",22,"中国",'M'));

        // 1)找到年龄大于18岁的人并输出;
        personList.stream().filter((p) -> p.getAge() > 18).forEach(System.out::println);

        System.out.println("-------------------------------------------");

        // 2)找出所有中国人的数量
        long chinaPersonNum = personList.stream().filter((p) -> p.getCountry().equals("中国")).count();
        System.out.println("中国人有:" + chinaPersonNum);

        // limit
        personList.stream().filter((p) -> p.getSex() == 'F').limit(2).forEach(System.out::println);
        System.out.println();
        // skip
        personList.stream().filter((p) -> p.getSex() == 'F').skip(1).forEach(System.out::println);

        // distinct
        personList.stream().filter((p) -> p.getSex() == 'M').distinct().forEach(System.out::println);

        // map
        personList.stream().map((p) -> {
            PersonCountry personName = new PersonCountry();
            personName.setCountry(p.getCountry());
            return personName;
        }).distinct().forEach(System.out::println);

        // map2
        List<String> list = Arrays.asList("aaa","bbb","ccc","ddd","ddd");

        final Stream<Stream<Character>> streamStream
                = list.stream().map(TestStreamAPI::getCharacterByString);
//        streamStream.forEach(System.out::println);
        streamStream.forEach(sm -> sm.forEach(System.out::print));

        // flatMap
        final Stream<Character> characterStream = list.stream().flatMap(TestStreamAPI::getCharacterByString);
        characterStream.forEach(System.out::print);

        // sort
        final Stream<Person> sorted = personList.stream().sorted((p1, p2) -> {

            if (p1.getAge().equals(p2.getAge())) {
                return p1.getName().compareTo(p2.getName());
            } else {
                return p1.getAge().compareTo(p2.getAge());
            }
        });
        sorted.forEach(System.out::println);

        // allMatch
        final Stream<Person> stream = personList.stream();
        final boolean adult = stream.allMatch(p -> p.getAge() >= 18);
        System.out.println("是否都是成年人:" + adult);

        final boolean chinaese = personList.stream().allMatch(p -> p.getCountry().equals("中国"));
        System.out.println("是否都是中国人:" + chinaese);

        // max min
        final Optional<Person> maxAge = personList.stream().max((p1, p2) -> p1.getAge().compareTo(p2.getAge()));
        System.out.println("年龄最大的人信息:" + maxAge.get());

        final Optional<Person> minAge = personList.stream().min((p1, p2) -> p1.getAge().compareTo(p2.getAge()));
        System.out.println("年龄最小的人信息:" + minAge.get());

        // reduce
        List<Integer> integerList = new ArrayList<>(100);
        for(int i = 1;i <= 100;i++) {
            integerList.add(i);
        }
        final Integer reduce = integerList.stream().reduce(0, (x, y) -> x + y);
        System.out.println("结果为:" + reduce);

        final Optional<Integer> totalAge = personList.stream().map(Person::getAge).reduce(Integer::sum);
        System.out.println("年龄总和:" + totalAge);

        // collect
        final List<String> collect = personList.stream().map(p -> p.getCountry()).distinct().collect(Collectors.toList());
        System.out.println(collect);

        final Double collect1 = personList.stream().collect(Collectors.averagingInt(p -> p.getAge()));
        System.out.println("平均年龄为:" + collect1);

        final Optional<Integer> maxAge2 = personList.stream().map(Person::getAge).collect(Collectors.maxBy(Integer::compareTo));
        System.out.println(maxAge2.get());

        try(final Stream<Integer> integerStream = personList.stream().map(Person::getAge)) {
            final Optional<Integer> minAge2 = integerStream.collect(Collectors.minBy(Integer::compareTo));
            System.out.println(minAge2.get());
        }
    }

    public static Stream<Character> getCharacterByString(String str) {

        List<Character> characterList = new ArrayList<>();

        for (Character character : str.toCharArray()) {
            characterList.add(character);
        }

        return characterList.stream();
    }
}

@Data
class PersonCountry {
    private String country;
}

@Data
class Person {
    private String name;
    private Integer age;
    private String country;
    private char sex;

    public Person(String name, Integer age, String country, char sex) {
        this.name = name;
        this.age = age;
        this.country = country;
        this.sex = sex;
    }
}

原文:https://blog.csdn.net/zhuguang10/article/details/89472673

史上最强Tomcat8性能优化

阿里巴巴为什么能抗住90秒100亿?--服务端高并发分布式架构演进之路

B2B电商平台--ChinaPay银联电子支付功能

学会Zookeeper分布式锁,让面试官对你刮目相看

SpringCloud电商秒杀微服务-Redisson分布式锁方案

查看更多好文,进入公众号--撩我--往期精彩

一只 有深度 有灵魂 的公众号0.0

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值