【题解】Paint Color Aizu - 0531(经典问题 离散化) ⭐⭐⭐

本文介绍了一个计算长方形三合板上未被护板遮挡区域的涂色数量的算法。通过离散化处理和搜索算法,解决了数据量大的情况下如何高效计算的问题。

Paint Color Aizu - 0531

为了宣传信息竞赛,要在长方形的三合板上喷油漆来制作招牌。三合板上不需要涂色的部分预先贴好了护板。被护板隔开的区域要涂上不同的颜色,比如上图就应该涂上5种颜色。
请编写一个程序计算涂色数量,输入数据中,保证看板不会被护板全部遮住,并且护板的边一定是水平或垂直的。

Input

Input

第一个数是宽w(1 ≤ w ≤ 1000000),第二个数是高h(1 ≤ h ≤ 1000000)。
第二行是护板的数量n(1 ≤ n ≤ 1000),接着n行是每个护板的左下角坐标 (x1 , y1 )和右上角坐标 (x2 , y2 ),用空格隔开: x1 , y1 , x2 , y2 (0 ≤ x1< x2 ≤ w, 0 ≤ y1 < y2 ≤ h 都是整数)
招牌的坐标系如下,左下角是 (0, 0) ,右上角是(w, h) , 测试集中的30%都满足w ≤ 100, h ≤ 100, n ≤ 100。在这里插入图片描述

Output

颜色的数量

Examples

Sample Input
15 6
10
1 4 5 6
2 1 4 5
1 0 5 1
6 1 7 5
7 5 9 6
7 0 9 2
9 1 10 5
11 0 14 1
12 1 13 5
11 5 14 6
0 0

Sample Output
5

Hint




题意:
题解:

白书例题, 其实就是求图中区域的个数就好了, 首先考虑直接搜索就能写, 但是由于数据过大, 可能会超时
这时我们要对数据进行离散化处理

经验小结:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <stdlib.h>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
using namespace std;
#define ms(x, n) memset(x,n,sizeof(x));
typedef  long long LL;
const int inf = 1<<30;
const LL maxn = 1010;

int W, H, N;
int X1[maxn], X2[maxn], Y1[maxn], Y2[maxn];
bool fld[maxn * 3][maxn * 3];
int dx[] = {0, 0, 1, -1}, dy[] = {1, -1, 0, 0};
int compress(int *x1, int *x2, int w){
    vector<int> xs;
    for(int i = 0; i < N; i++){
        for(int d = -1; d <= 1; d++){
            int tx1= x1[i] + d, tx2 = x2[i] + d;
            if(0 <= tx1 && tx1 < w) xs.push_back(tx1);
            if(0 <= tx2 && tx2 < w) xs.push_back(tx2);
        }
    }
    sort(xs.begin(), xs.end());
    xs.erase(unique(xs.begin(), xs.end()), xs.end());
    for(int i = 0; i < N; i++){
        x1[i] = find(xs.begin(), xs.end(), x1[i]) - xs.begin();
        x2[i] = find(xs.begin(), xs.end(), x2[i]) - xs.begin();
    }
    return xs.size();
}
void solve(){
    W = compress(X1, X2, W);
    H = compress(Y1, Y2, H);
    ms(fld, 0);
    for(int i = 0; i < N; i++){
        for(int y = Y1[i]; y <= Y2[i]; y++){
            for(int x = X1[i]; x <= X2[i]; x++){
                fld[y][x] = true;
            }
        }
    }
    int ans = 0;
    for(int y = 0; y < H; y++){
        for(int x = 0; x < W; x++){
            if(fld[y][x]) continue;
            ans++;
            queue<pair<int, int> > que;
            que.push(make_pair(x, y));
            while(!que.empty()){
                int sx = que.front().first, sy = que.front().second;
                que.pop();
                for(int i = 0; i < 4; i++){
                    int tx = sx + dx[i], ty = sy + dy[i];
                    if(tx < 0 || W <= tx || ty < 0 || H <= ty) continue;
                    if(fld[ty][tx]) continue;
                    que.push(make_pair(tx, ty));
                    fld[ty][tx] = true;
                }
            }
        }
    }
    printf("%d\n", ans);
}
int main()
{
    while(cin >> W >> H, W || H){
        cin >> N;
        for(int i = 0; i < N; i++){
            cin >> X1[i] >> Y1[i] >> X2[i] >> Y2[i];
            X2[i]--, Y2[i]--;
        }
        solve();
    }
    return 0;
}
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值