接目标检测系列算法 知识点1:Fast R-CNNROI的功能:知识点2:FasterR-CNN注:这里要注意RPN(Region Proposal Networks)再原图上产生上万个Anchor,根据相关IOU的阈值采样正样本和负样本,得到候选框。知识点3:YOLO系列YOLOv1过程:1)将一幅图像分成SxS个网格(grid cell),.如果某个object的中心落在这个网格中,则这个网格就负责预测这个object。2)每个网格要预测B个bounding box,每个bo
目标检测从入门到精通的一个项目笔记 知识点1:项目已经部署上线:Web端演示、百度机器人端识别演示项目结构:数据采集层~数据收集标注,深度模型层~YOLO,SSD,模型导出,Serving部署, 用户层~前端交互,(Web后台)对接部署模型知识点2:1】两步走的目标检测:先找出候选区域,后对区域进行调整进行分类2】端到端的目标检测:采用一个网络一步到位,输入图片,输出位置和类别知识点3:目标检测的任务:分类:。N个类别 。输入:图片 。输出:类别 。评估指标:accuracy(mAP)定位: 。N个类别
github国内加速访问 1、访问 https://www.ipaddress.com,2、查询 github.com 、assets-cnd.github.com 、gibhut.global.ssl.fastly.net3、C:\Windows\System32\drivers\etc 找到hosts文件,然后添加方式如下:140.82.114.3 github.com185.199.108.153 assets-cdn.github.com199.232.69.194 github.global.ssl.fas
机器学习思想总结 1、k近邻法(k-nearest neighbor, k-NN)解决问题:训练样本集有类别标签和数据特征,输入没有标签的新数据,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。算法步骤:计算已知类别数据集中的点与当前点之间的距离; 按照距离递增次序排序; 选取与当前点距离最小的k个点; 确定前k个点所在类别的出现频率; 返回前k个点所出现频率最高的类别作为当前点的预测分类注意:这个算法不用训练数据,直接计算距离,得出结果。2、.
Self-Supervised Agent Learning for Unsupervised Cross-Domain Person Re-Identification论文阅读笔记 习惯了看别人写的论文笔记,这篇文章没找到,自己写一下笔记,嘿嘿,帮助想我一样渣渣的小伙伴们理一下思路,感兴趣的朋友还是要看原论文丫。论文方向是:无监督域适应(UDA):网络从带标签的源域学到的参数转移到完全无标记的目标域。论文的实现方法:1.Self-Supervised Agent Learning代理的目的:把源域和目标域关联起来。作者将Agent初始化为源域的类别特征(分类器的权重向量)。代理的数量是源域数据集中的id数量。在模型训练期间,更新代理。表示图像特征与代理的相似
latex学习笔记 Latex+vs code 安装博客:https://zhuanlan.zhihu.com/p/120815558配置文档:https://www.cnblogs.com/muhanxiaoquan/p/12457390.html通常英文文档Recipe时选择PDFLaTeX,中文排版用XeLaTeX。ctrl+F搜索关键字很好用,如想知道表格排版代码要求的位置就再搜索栏里打“table”,然后上下翻动,可以很快定位到对应的位置入门必看文档:https://liam.page/2014/09
写SCI论文工具 排版:导师必须让用latex排版,编辑工具visual studio code,相关配置请自行百度第一步:学习latex总结:B站latex中文教程-15集,入门必看,比刘海洋的更适合我本人学习,对应笔记地址:https://bbs.pku.edu.cn/attach/e7/f2/e7f2bb698b9c3672/tex_intro_talk.pdf论文工具使用:自动编写公式工具软件:https://mathpix.com,相关博客:https://blog.csdn.net/weixin_
Visual studio code + latex +bibtex,参考文献不能生成的原因: Visual studio code + latex +bibtex,参考文献不能生成的原因:总结:(几个关键点)\bibliographystyle{ieeetr},格式说明必须放在前头,编译时借助格式文件生成.bbl文件的。而真正的引用是.bbl文件。 \bibliography{myreference},文件名为 myreference.bib放在.tex文件目录下 正文中必须有引用\cite{xxxx},引用前加空格。 重新修改.bib文件后,编译前先前的*.bbl文件删除,重新.
python中参数使用记录 add_argument:读入命令行参数,该调用有多个参数ArgumentParser.add_argument(name or flags…[, action][, nargs][, const][, default][, type][, choices][, required][, help][, metavar][, dest])name or flags:是必须的参数,该参数接受选项参数或者是位置参数(一串文件名)不带'--'的参数 调用脚本时必须输入值 参数输入的顺...
pytorch学习最全官网地址 pytorch:https://pytorch.org/Github:https://github.com/pytorch/pytorchPytorch API:https://pytorch.org/docs/master/Pytorch Tutorials:https://pytorch.org/tutorials/
电脑访问打不开github网页 第一步:找到hosts文件。地址:C:\Windows\System32\Drivers\etc第二步:不能直接修改hosts文件,需要将文件复制粘贴到桌面(或其它地方)第三步:输入https://www.ipaddress.com/,在搜索框中搜github.com获得本机ip,然后搜github.global.ssl.fastly.net获得本机ip第四步:在hosts文件中添加三行记录(#号是注释):#github192.30.253.112 github.com15.
pytorch高级知识 Broadcasting自动扩展维度▪Feature maps: [4, 32, 14, 14]▪ Bias: [32, 1, 1] => [1, 32, 1, 1] => [4, 32, 14, 14]▪ [4, 32, 14, 14]▪ [1, 32, 1, 1] => [4, 32, 14, 14]拼接与拆分a.shape=[5,32,8]b.s...
pytorch基础知识 1、线性回归Linear Regression:连续值的预测逻辑回归Logistic Regression:在线性回归的基础上加上sigmoid激活函数分类 Classification:离散值预测2、pytorch基础知识:1)创建一个Tensor...import from numpya=np.array([2,3.3])torch.from_numpy(a)....
tensorflow的安装 打开绿色anaconda,看虚拟环境,anaconda自带python3.7 新建一个环境,命令conda create -n tf2.0 python=3.7, 进入新环境,命令conda activate tf2.0 ,这时可以看到命令提示符前面的小括号里从base 变成了 tf2.0。然后输入命令pip install tensorflow==2.0.0 更新pip版本,从上一步...
jupyter notebook使用快捷键总结 编辑模式进入命令模式:ESC绿色命令模式进入编辑模式:enterShift+enter:运行且进入下面的代码块Ctrl+enter运行当前代码块,并且光标停留在当前代码块dd:删除当前的代码块b:在下方添加一个空的代码块a:在上方添加一个空的代码块m:将编辑语言代码块变成Markdown代码块y:将Markdown代码块变成编辑语言代码快超链接[python](...
python库安装 使用anaconda自带的python3.7:我的默认安装位置C:\Users\86188\anaconda\python.execmd下的应用命令,默认安装位置C:\Users\86188\下安装1、pytorch安装对应cuda版本兼容问题官网:https://pytorch.org/pytorch旧版本网址:https://pytorch.org/get-started/...