算法 跳台阶

跳台阶

 

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

 

解法一:

public class Solution {
    public int JumpFloor(int target) { // 递归
        if (target == 1) {
            return 1;
        }
        if (target == 2) {
            return 2;
        }
        return JumpFloor(target - 1) + JumpFloor(target - 2);
    }
}

 

解法二:

public class Solution {
    public int JumpFloor(int target) { // 非递归
        if (target == 1) {
            return 1;
        }
        if (target == 2) {
            return 2;
        }
        int a = 1, b = 2, c = 0;
        for (int i = 3; i <= target; i++) {
            c = a + b;
            a = b;
            b = c;
        }
        return c;
    }
}

 

 

扩展:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

解法一:

public class Solution {
    public int JumpFloorII(int target) {
       if (target == 1) {
            return 1;
        }
        if (target == 2) {
            return 2;
        }
        int n = 1;
        for (int i = 1; i < target; i++) { // 递归
            n += JumpFloorII(target - i);
        }
        return n;
    }
     
    public int sum(int[] array, int start, int end) {
        int sum = 0;
        for (int i = start; i < end; i++) {
            sum += array[i];
        }
        return sum;
    }
}

 解法二:

public class Solution {
    public int JumpFloorII(int target) { // 动态规划
       if (target == 1) {
            return 1;
        }
        if (target == 2) {
            return 2;
        }
        int[] array = new int[target];
        array[0] = 1;
        array[1] = 2;
        for (int i = 3; i <= target; i++) {
            array[i - 1] = sum(array, 0, i - 1) + 1;
        }
        return array[target - 1];
    }
     
    public int sum(int[] array, int start, int end) {
        int sum = 0;
        for (int i = start; i < end; i++) {
            sum += array[i];
        }
        return sum;
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值