第十九章:马尔可夫链蒙特卡洛法

本笔记仅记录《统计学习方法》中各个章节算法|模型的简要概述,比较泛泛而谈,用于应对夏令营面试可能会问的一些问题,不记录证明过程和详细的算法流程。大佬可自行绕路。

更多章节内容请参阅:李航《统计学习方法》学习笔记-CSDN博客

目录

马尔可夫链蒙特卡洛法概述:

蒙特卡洛法:

随机抽样:

数学期望估计:

积分计算:

马尔可夫链:

基本定义:

离散状态马尔可夫链:

连续状态马尔可夫链:

马尔可夫链的性质:

马尔科夫蒙特卡洛法:

基本想法:

基本步骤:

马尔可夫链蒙特卡罗法与统计学习:

Metropolis-Hastings:

吉布斯抽样:


马尔可夫链蒙特卡洛法概述:

蒙特卡罗法(Monte Carlo method),也称为统计模拟方法(statistical simulationmethod),是通过从概率模型的随机抽样进行近似数值计算的方法。马尔可夫链蒙特卡罗法(Markov Chain Monte Carlo,MCMC),则是以马尔可夫链(Markovchain)为概率模型的蒙特卡罗法。马尔可夫链蒙特卡罗法构建一个马尔可夫链,使其平稳分布就是要进行抽样的分布,首先基于该马尔可夫链进行随机游走,产生样本的序列,之后使用该平稳分布的样本进行近似数值计算。

马尔可夫链蒙特卡罗法被应用于概率分布的估计、定积分的近似计算、最优化问题的近似求解等问题,特别是被应用于统计学习中概率模型的学习与推理,是重要的统计学习计算方法。

蒙特卡洛法:

随机抽样:

统计学和机器学习的目的是基于数据对概率分布的特征进行推断,蒙特卡罗法要解决的问题是,假设概率分布的定义已知,通过抽样获得概率分布的随机样本,并通过得到的随机样本对概率分布的特征进行分析。比如,从样本得到经验分布,从而估计总体分布;或者从样本计算出样本均值,从而估计总体期望。所以蒙特卡罗法的核心是随机抽样(random sampling)。

一般的蒙特卡罗法有直接抽样法、接受-拒绝抽样法、重要性抽样法等。接受-拒绝抽样法、重要性抽样法适合于概率密度函数复杂(如密度函数含有多个变量,各变量相互不独立,密度函数形式复杂),不能直接抽样的情况。

数学期望估计:

一般的蒙特卡罗法,如直接抽样法、接受-拒绝抽样法、重要性抽样法,也可以用于数学期望估计(estimation of mathematical expectation)。

积分计算:

一般的蒙特卡罗法也可以用于定积分的近似计算,称为蒙特卡罗积分(MonteCarlo integration)。

例子:

马尔可夫链:

基本定义:

离散状态马尔可夫链:

  1. 转移概率矩阵和状态分布
  2. 平稳分布

连续状态马尔可夫链:

马尔可夫链的性质:

  1. 不可约
  2. 非周期
  3. 正常返
  4. 遍历定理
  5. 可逆马尔可夫链

马尔科夫蒙特卡洛法:

基本想法:

假设目标是对一个概率分布进行随机抽样,或者是求函数关于该概率分布的数学期望。可以采用传统的蒙特卡罗法,如接受-拒绝法、重要性抽样法,也可以使用马尔可夫链蒙特卡罗法。马尔可夫链蒙特卡罗法更适合于随机变量是多元的、密度函数是非标准形式的、随机变量各分量不独立等情况。

基本步骤:

马尔可夫链蒙特卡罗法与统计学习:

Metropolis-Hastings:

吉布斯抽样:

吉布斯抽样(Gibbs sampling)用于多元变量联合分布的抽样和估计1。其基本做法是,从联合概率分布定义满条件概率分布,依次对满条件概率分布进行抽样,得到样本的序列。可以证明这样的抽样过程是在一个马尔可夫链上的随机游走,每一个样本对应着马尔可夫链的状态,平稳分布就是目标的联合分布。整体成为一个马尔可夫链蒙特卡罗法,燃烧期之后的样本就是联合分布的随机样本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值