anaconda配置深度学习环境

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/a1361856614/article/details/90522410

第一步:安装显卡驱动

从 Nvidia 官网下载合适的显卡驱动,并安装。

第二步:安装 Anaconda

从清华开源镜像站或者官网下载 的安装包,然后安装。 https://www.anaconda.com/distribution/

1.cd到anaconda安装包目录下,安装anaconda:

bash Anaconda3-5.0.1-Linux-x86_64.sh

2.按enter浏览完协议以后,输入yes同意协议(注意再选择安装路径的时候,按enter即可安装在默认目录下,不要再输入yes~,否则就安装在yes目录下了~ T_T)

3.运行conda指令,此时可能提示找不到conda指令,使用指令(xxx为自己的用户名):

echo 'export PATH="/home/xxx/anaconda3/bin:$PATH"'>>~/.bashrc
source ~/.bashrc

即可使用conda指令。
 

第三步:创建隔离环境

打开终端(命令行),输入以下内容,创建一个名为 py3.7的隔离环境。

conda create -n py3.7 python=3.7

第四步:安装 TensorFlow-GPU

打开终端(命令行),激活上一步创建的隔离环境:

conda activate py3.6


接着,输入以下内容,就将 TensorFlow-GPU 安装好了。

conda install tensorflow-gpu


安装一些机器学习常用的包(可选操作):

conda install numpy, scipy, matplotlib, pandas,scikit-learn,scikit-image

到此,TensorFlow-GPU 深度学习环境就算配置好了。我们没有手动安装 CUDA 和 cuDNN,这是因为 Conda 在安装 TensorFlow 时会自动在隔离环境中安装合适版本的 CUDA 及 cuDNN。

第五步:测试一下代码

 

import tensorflow as tf
import numpy as np
 
# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300
 
# 构造一个线性模型
#
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b
 
# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
 
# 初始化变量
init = tf.initialize_all_variables()
 
# 启动图 (graph)
sess = tf.Session()
sess.run(init)
 
# 拟合平面
for step in range(0, 201):
    sess.run(train)
    if step % 20 == 0:
        print (step, sess.run(W), sess.run(b))
 
# 得到最佳拟合结果 W: [[0.100  0.200]], b: [0.300]

 

 

展开阅读全文

没有更多推荐了,返回首页