基于一次手势训练的kinect 3D 动态手势识别(提纲)

本文介绍了基于一次手势训练的Kinect 3D动态手势识别项目,包括手势分割(使用DTW)、视频图像特征提取(SIFT关键点提取和描述)以及手势分类(K最近邻)。在手势分割中,利用DTW消除速度影响;特征提取阶段,通过SIFT算法获取3D信息;最后,以KNN进行手势分类,实现单样本手势识别。
摘要由CSDN通过智能技术生成

正在做kinect手势识别的项目,boss检查进度需要,特发一篇文章来记录所学顺便整理思路~~

基于一次手势训练是指一个手势的训练样本只有一个,无法使用SVM这种需要大量训练样本的模型


整体步骤有3个

一、手势分割

     测试的视频中可能中不止一个手势,想将它们识别首先要做的是分割手势。可以用 Dynamic Time WarpingDTW),简单说原理就是时间上整合,消除手势挥动速度的影响。下面这个网址讲的很详细ÿ

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值