SGU 495 Kids and Prizes:期望dp / 概率dp / 推公式

题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=495

题意:

  有n个礼物盒,m个人。

  最开始每个礼物盒中都有一个礼物。

  m个人依次随机选一个盒子,如果有礼物就拿走,然后放回空盒子。

  问你所有人得到总礼物数的期望。

 

题解:

  三种做法:期望dp,概率dp,推公式

 

  一、期望dp

    表示状态:

      dp[i] = 该第i个人拿箱子时的总礼物的期望

    找出答案:

      ans = dp[m]

    如何转移:

      对于第i个人,拿到礼物或没拿到。

      (1)φ(没拿到) = dp[i]  P(没拿到) = dp[i]/n

      (2)φ(拿到) = dp[i]+1  P(拿到) = (n-dp[i])/n

      综上:dp[i+1] = dp[i] * dp[i]/n + (dp[i]+1) * (n-dp[i])/n

    边界条件:

      dp[0] = 0

      还没开始拿的时候礼物数为0

 

  二、概率dp

    表示状态:

      dp[i] = 第i个人拿到礼物的概率

    找出答案:

      ans = ∑ dp[i]

      每个人得到礼物的概率 * 得到礼物的数量(为1) 之和。

    如何转移:

      对于第i个人,拿到礼物或没拿到。

      (1)没拿到:dp[i+1]依然等于dp[i],没拿到礼物的概率为1-dp[i].

      (2)拿到:dp[i+1] = dp[i] - 1/n,拿到的概率为dp[i].

      综上:dp[i+1] = dp[i] * (1 - dp[i]) + (dp[i] - 1/n) * dp[i]

    边界条件:

      dp[0] = 1

      所有盒子里都有礼物,第0个人一定拿到礼物。

 

  三、推公式

    m个人是独立的。

    对于每个礼物不被人选中的概率为((n-1)/n)^m

    那么不被选中的礼物数的期望就是 n*((n-1)/n)^m

    所以答案就是 n-n*((n-1)/n)^m

 

AC Code(expectation):

 1 // state expression:
 2 // dp[i] = expectation
 3 // i: considering ith person
 4 //
 5 // find the answer:
 6 // ans = dp[m]
 7 //
 8 // transferring:
 9 // dp[i+1] = dp[i] * dp[i]/n + (dp[i]+1) * (n-dp[i])/n
10 //
11 // boundary:
12 // dp[0] = 0
13 #include <iostream>
14 #include <stdio.h>
15 #include <string.h>
16 #define MAX_M 100005
17 
18 using namespace std;
19 
20 int n,m;
21 double dp[MAX_M];
22 
23 int main()
24 {
25     scanf("%d%d",&n,&m);
26     for(int i=0;i<m;i++)
27     {
28         dp[i+1]=dp[i]*dp[i]/n+(dp[i]+1.0)*(n-dp[i])/n;
29     }
30     printf("%.10f\n",dp[m]);
31 }

 

AC Code(probability):

 1 // state expression:
 2 // dp[i] = probability
 3 // i: ith person got a gift
 4 //
 5 // find the answer:
 6 // sigma dp[i]
 7 //
 8 // transferring:
 9 // dp[i+1] = dp[i] * (1 - dp[i]) + (dp[i] - 1/n) * dp[i]
10 //
11 // boundary:
12 // dp[0] = 1
13 #include <iostream>
14 #include <stdio.h>
15 #include <string.h>
16 #define MAX_M 100005
17 
18 using namespace std;
19 
20 int n,m;
21 double ans=0;
22 double dp[MAX_M];
23 
24 int main()
25 {
26     scanf("%d%d",&n,&m);
27     dp[0]=1;
28     for(int i=0;i<m;i++)
29     {
30         dp[i+1]=dp[i]*(1.0-dp[i])+(dp[i]-1.0/n)*dp[i];
31         ans+=dp[i];
32     }
33     printf("%.10f\n",ans);
34 }

 

AC Code(公式):

 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <string.h>
 4 #include <math.h>
 5 
 6 using namespace std;
 7 
 8 int n,m;
 9 
10 int main()
11 {
12     scanf("%d%d",&n,&m);
13     printf("%.10f\n",n-n*pow((n-1.0)/n,m));
14 }

 

转载于:https://www.cnblogs.com/Leohh/p/7566376.html

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
DirectX修复工具(DirectX Repair)是一款系统级工具软件,简便易用。本程序为绿色版,无需安装,可直接运行。 本程序的主要功能是检测当前系统的DirectX状态,如果发现异常则进行修复。程序主要针对0xc000007b问题设计,可以完美修复该问题。本程序中包含了最新版的DirectX redist(Jun2010),并且全部DX文件都有Microsoft的数字签名,安全放心。 本程序为了应对一般电脑用户的使用,采用了易用的一键式设计,只要点击主界面上的“检测并修复”按钮,程序就会自动完成校验、检测、下载、修复以及注册的全部功能,无需用户的介入,大大降低了使用难度。在常规修复过程中,程序还会自动检测DirectX加速状态,在异常时给予用户相应提示。 本程序适用于多个操作系统,如Windows XP(需先安装.NET 2.0,详情请参阅“致Windows XP用户.txt”文件)、Windows Vista、Windows 7、Windows 8、Windows 8.1、Windows 8.1 Update、Windows 10,同时兼容32位操作系统和64位操作系统。本程序会根据系统的不同,自动调整任务模式,无需用户进行设置。 本程序的V4.0版分为标准版、增强版以及在线修复版。所有版本都支持修复DirectX的功能,而增强版则额外支持修复c++的功能。在线修复版功能与标准版相同,但其所需的数据包需要在修复时自动下载。各个版本之间,主程序完全相同,只是其配套使用的数据包不同。因此,标准版和在线修复版可以通过补全扩展包的形式成为增强版。本程序自V3.5版起,自带扩展功能。只要在主界面的“工具”菜单下打开“选项”对话框,找到“扩展”标签,点击其中的“开始扩展”按钮即可。扩展过程需要Internet连接,扩展成功后新的数据包可自动生效。扩展用时根据网络速度不同而不同,最快仅需数秒,最慢需要数分钟,烦请耐心等待。如扩展失败,可点击“扩展”界面左上角小锁图标切换为加密连接,即可很大程度上避免因防火墙或其他原因导致的连接失败。 本程序自V2.0版起采用全新的底层程序架构,使用了异步多线程编程技术,使得检测、下载、修复单独进行,互不干扰,快速如飞。新程序更改了自我校验方式,因此使用新版本的程序时不会再出现自我校验失败的错误;但并非取消自我校验,因此程序安全性与之前版本相同,并未降低。 程序有更新系统c++功能。由于绝大多数软件运行时需要c++的支持,并且c++的异常也会导致0xc000007b错误,因此程序在检测修复的同时,也会根据需要更新系统中的c++组件。自V3.2版本开始使用了全新的c++扩展包,可以大幅提高工业软件修复成功的概率。修复c++的功能仅限于增强版,标准版及在线修复版在系统c++异常时(非丢失时)会提示用户使用增强版进行修复。除常规修复外,新版程序还支持C++强力修复功能。当常规修复无效时,可以到本程序的选项界面内开启强力修复功能,可大幅提高修复成功率。请注意,请仅在常规修复无效时再使用此功能。 程序有两种窗口样式。正常模式即默认样式,适合绝大多数用户使用。另有一种简约模式,此时窗口将只显示最基本的内容,修复会自动进行,修复完成10秒钟后会自动退出。该窗口样式可以使修复工作变得更加简单快速,同时方便其他软件、游戏将本程序内嵌,即可进行无需人工参与的快速修复。开启简约模式的方法是:打开程序所在目录下的“Settings.ini”文件(如果没有可以自己创建),将其中的“FormStyle”一项的值改为“Simple”并保存即可。 新版程序支持命令行运行模式。在命令行中调用本程序,可以在路径后直接添加命令进行相应的设置。常见的命令有7类,分别是设置语言的命令、设置窗口模式的命令,设置安全级别的命令、开启强力修复的命令、设置c++修复模式的命令、控制Direct加速的命令、显示版权信息的命令。具体命令名称可以通过“/help”或“/?”进行查询。 程序有高级筛选功能,开启该功能后用户可以自主选择要修复的文件,避免了其他不必要的修复工作。同时,也支持通过文件进行辅助筛选,只要在程序目录下建立“Filter.dat”文件,其中的每一行写一个需要修复文件的序号即可。该功能仅针对高级用户使用,并且必须在正常窗口模式下才有效(简约模式时无效)。 本程序有自动记录日志功能,可以记录每一次检测修复结果,方便在出现问题时,及时分析和查找原因,以便找到解决办法。 程序的“选项”对话框中包含了7项高级功能。点击"常规”选项卡可以调整程序的基本运行情况,包括日志记录、安全级别控制、调试模式开启等。只有开启调试模式后才能在C
本套餐将包括两个重磅性的课程与一个赠送学习的课程,分别为SpringBoot实战视频教程与RabbitMQ实战教程跟SSM整合开发之poi导入导出Excel。目的是为了让各位小伙伴可以从零基础一步一个脚印学习微服务项目的开发,特别是SpringBoot项目的开发,之后会进入第二个课程:RabbitMQ的实战,即消息中间件在实际项目或者系统中各种业务模块的实战并解决一些常见的典型的问题!核心的知识点分别包括 一、SpringBoot实战历程课程 (1)SpringBoot实战应用场景的介绍与代码实战 (2)发送邮件服务、上传下载文件服务、Poi导入导出Excel (3)单模块与多模块项目构建、项目部署打包、日志、多环境配置、lombok、validator以及mybatis整合实战跟多数据源实战 (4)Redis缓存中间件的实战与缓存雪崩跟缓存穿透等问题的解决实战 (5)RabbitMQ消息中间件在业务模块异步解耦、通信、消息确认机制以及并发量配置等的实战 二、RabbitMQ实战教程课程 (1)RabbitMQ的官网权威技术手册拜读,认识并理解各大专有名词,如队列,交换机,路由,死信队列,消息确认机制等等 (2)RabbitMQ在业务服务模块之间的异步解耦通信实战,如异步记录日志与发送邮件等 (3)商城系统抢单高并发情况下RabbitMQ的限流作用与代码实战 (4)消息确认机制与并发量配置并用来实战商城用户下单 (5)死信队列深入讲解与DLX,DLK,TTL等概念的讲解并用来实战 “支付系统用户下单后支付超时而失效其下单记录”实战 详情,各位小伙伴可以查看两个课程的目录。相信学完该套餐相关课程后,你的实战能力将大大提升!涨薪将不再遥遥无期! 最后,赠送的SSM整合开发之POI导入导出Excel目的是为了让各位小伙伴也可以学习Spring+SpringMVC+Mybatis整合开发的项目,让大家一对比SpringBoot与SPring的项目开发流程以及复杂程度!!! 相信学完之后,你会对SpringBoot爱不释手!!
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值