BZOJ 2431 [HAOI2009]逆序对数列:dp 逆序对

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2431

题意:

  给定n,k,问你有多少个由1~n组成的排列,使得逆序对个数恰好为k个。

 

题解:

  表示状态:

    dp[i][j] = num of sequences

    i:已经用了1~i之间的数(在这一步放了数字i)

    j:逆序对个数为j

 

  找出答案:

    ans = dp[n][k]

 

  如何转移:

    在当前这一步要放数字i。

    所以要将i插入一个由1~i-1组成的排列中。

    若将i插入位置x(0 <= x <= i-1),则新添的逆序对个数为x。

    所以:

      dp[i][j] = ∑ dp[i-1][j-x]

    即:

      dp[i][j] = ∑ dp[i-1][j-i+1 to j]

    由于裸dp复杂度为O(N^3) = O(10^9),所以加一个前缀和优化。

 

  边界条件:

    dp[1][0] = 1

    others = 0

 

AC Code:

 

 1 // state expression:
 2 // dp[i][j] = num of sequences
 3 // i: considered number i
 4 // j: there is j inversion pairs
 5 //
 6 // find the answer:
 7 // ans = dp[n][k]
 8 //
 9 // transferring:
10 // dp[i][j] = sigma dp[i-1][j-i+1 to j]
11 //
12 // boundary:
13 // dp[1][0] = 1
14 #include <iostream>
15 #include <stdio.h>
16 #include <string.h>
17 #define MAX_N 1005
18 #define MAX_K 1005
19 #define MOD 10000
20 
21 using namespace std;
22 
23 int n,t;
24 int dp[MAX_N][MAX_K];
25 int sum[MAX_N][MAX_K];
26 
27 void read()
28 {
29     cin>>n>>t;
30 }
31 
32 void update_sum(int i,int j,int a)
33 {
34     if(j==0) sum[i][j]=a;
35     else sum[i][j]=(sum[i][j-1]+a)%MOD;
36 }
37 
38 int query_sum(int i,int x,int y)
39 {
40     if(x==0) return sum[i][y];
41     else return ((sum[i][y]-sum[i][x-1])%MOD+MOD)%MOD;
42 }
43 
44 void solve()
45 {
46     memset(dp,0,sizeof(dp));
47     memset(sum,0,sizeof(sum));
48     dp[1][0]=1;
49     for(int i=0;i<=t;i++)
50     {
51         sum[1][i]=1;
52     }
53     for(int i=2;i<=n;i++)
54     {
55         for(int j=0;j<=t;j++)
56         {
57             dp[i][j]=query_sum(i-1,max(0,j-i+1),j);
58             update_sum(i,j,dp[i][j]);
59         }
60     }
61 }
62 
63 void print()
64 {
65     cout<<dp[n][t]<<endl;
66 }
67 
68 int main()
69 {
70     read();
71     solve();
72     print();
73 }

 

转载于:https://www.cnblogs.com/Leohh/p/7699900.html

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值