题目描述:给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
思想:动态规划,比如上边的数组 [-2,1,-3,4,-1,2,1,-5,4],我们每遇到前一个是正数就加到当前值上边,将数组转换成[-2,1,-2,4,3,5,6,1,5]这样求最大值,这个是官方给的一个题解,还有另外一个题解使用的分治法,比较复杂。
class Solution {
public int maxSubArray(int[] nums) {
int maxNum = nums[0];
for(int i = 1;i < nums.length;i++){
if (nums[i-1] > 0){
nums[i] = nums[i] + nums[i-1];
}
maxNum = Math.max(maxNum,nums[i]);
}
return maxNum;
}
}

本文探讨了如何在给定的整数数组中找到具有最大和的连续子数组,并介绍了动态规划方法解决此问题的思路。通过实例[-2,1,-3,4,-1,2,1,-5,4],展示了算法的具体应用过程,最终得出最大子数组和为6。
6662

被折叠的 条评论
为什么被折叠?



