机器学习:SVM(三)——序列最小最优化(SMO)算法

前面都只是讨论了向量机的最终形式以及推导过程,但是最终形式的求解没有给出。有许多最优化算法可以用于问题求解,但是当训练样本容量很大时,这些算法往往变得非常低效,以致无法使用。而SMO算法便是一种便捷高效算法。其实理清思路后,原理很好理解。避免麻烦直接贴图片。
1453066-20180918133834501-878495280.png
1453066-20180918133846877-1866425546.png
1453066-20180918133911363-1897402525.png
1453066-20180918133925268-1061306484.png
1453066-20180918133936768-321886615.png
1453066-20180918133947730-1944211922.png
1453066-20180918133959457-731166635.png
1453066-20180918134009735-1492560432.png
参考:
李航《统计学习方法》
周志华《机器学习》
[https://www.jianshu.com/p/55458caf0814]
[https://zhuanlan.zhihu.com/p/29212107]
[https://www.cnblogs.com/pinard/]

转载于:https://www.cnblogs.com/lyxML/p/9664957.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值