在Python编程中,装饰器、生成器和迭代器是三个核心特性,它们以优雅的方式解决了函数行为扩展、内存效率优化和序列化访问等常见问题。本文将通过原理剖析、实战案例和性能对比,揭示这三个特性的技术精髓,并提供可直接复用的代码模板。
一、装饰器:代码动态增强的魔法师
1.1 基础原理
装饰器通过@syntax
语法实现函数行为的动态增强,其本质是高阶函数嵌套调用。例如,一个基础日志装饰器可通过三层嵌套实现:
from functools import wraps
def logger(func):
@wraps(func) # 保留原函数元数据
def wrapper(*args, **kwargs):
print(f"[INFO] 调用函数 {
func.__name__}")
return func(*args, **kwargs)
return wrapper
@logger
def add(a, b):
return a + b
1.2 高级实战场景
场景1:带参数的装饰器
实现可配置的缓存装饰器,通过参数控制缓存有效期:
import time
from functools import wraps
def cached(ttl=60):
def decorator(func):
cache = {
}
@wraps(func)
def wrapper(*args):
current_time = time.time()
if args in cache and current_time - cache[args][1] < ttl:
return cache[args][0]
result = func(*args)
cache[args] = (result, current_time)
return result
return wrapper
return decorator
@cached(ttl=10