CodeForces - 687A NP-Hard Problem

本文详细介绍了如何使用邻接表和链式前向星存储实现二分图的染色判断,并针对可能存在孤立点的情况进行了优化。通过DFS遍历确保所有节点都被检查,避免了图不连通导致的错误。代码示例展示了整个流程,包括染色、判断和输出结果的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意大致是将图中的点划分为两部分,就是求问二分图,输出划分成二分图的两部分分别是什么。
数据量稍微大一点,使用邻接表或者链式前向星存储。
算法实现过程大概如下划分:

  1. 实现前向星存储
  2. 二分图染色判定
  3. 结果输出
    存储和输出没什么问题,输出也没有固定要求,答案不唯一,在判定的过程中有如下坑点:
    图可能不是连通图,有的点连不上,因此不能仅从某一个点出发做一次DFS,要从每个点都出发。
    第一个数据虽然存在4这一个孤立点,但是从1出发依然能得到一个符合题意的答案,所以第一个数据检验不出这个坑点
    正确写法如下:
#include <iostream>
#include <cstdio>

using namespace std;

typedef struct node {
    int u;
    int v;
    int w;
    int next;
}edge;

edge e[1000000];
int n, m;
int head[1000010];
int num;
int color[1000010];

void init() {
    num = 0;
    for (int i = 0; i <= 1000000; i++) {
        head[i] = -1;
    }
}

void addedge(int u, int v) {
    e[num].v=v;
    e[num].w=0;
    e[num].next = head[u];
    head[u] = num++;
   // cout << u << num << endl;
}

bool DFS(int u) {
    for (int i = head[u]; i != -1; i = e[i].next) {
        int v = e[i].v;
        if(color[v]==color[u]) return false;
        if(!color[v]) {
            color[v]=3-color[u];
            if(!DFS(v)) return false;
        }
    }
    return true;
}

int main() {
    init();
    cin >> n >> m;
    for (int i = 1; i <= m; i++) {
        int u, v;
        cin >> u >> v;
        addedge(u, v);
        addedge(v, u);
    }
//    for (int i = 1; i <= n; i ++) {
//        for (int j = head[i]; j != -1; j = e[j].next) {
//            cout << i << " " << e[j].v << endl;
//        }
//    }

    for (int i = 1; i <= n; i++) {
        if(color[i] != 0) continue;  //是否染过色,能减少计算量
        if(head[i] == -1) {     //如果是孤立点,不与其他点联通,随便染一个0 1 2 都行
            color[i] = 1;
            continue;
        }
        color[i] = 1;
        if(!DFS(i)) {
            cout << "-1" << endl;
            return 0;
        }
    }
    int white = 0;
    int black = 0;
    for (int i = 1; i <= n; i++) {
        //cout << color[i] << endl;
        if(color[i] == 1) white ++;
        if(color[i] == 2) black ++;
    }
    cout << white << endl;
    for (int i = 1; i <= n; i++) {
        if(color[i] ==1) cout << i << " ";
    }cout << endl;
    cout << black << endl;
    for (int i = 1; i <= n; i++) {
        if(color[i] ==2) cout << i << " ";
    }cout << endl;
    return 0;
}

### 关于 Codeforces Problem 1802A 目前提供的引用内容并未涉及 Codeforces 编号为 1802A 的题目详情或解决方案[^1]。然而,基于常见的竞赛编程问题模式以及可能的解决方法,可以推测该类题目通常围绕算法设计、数据结构应用或者特定技巧展开。 如果假设此题属于典型的算法挑战之一,则可以从以下几个方面入手分析: #### 可能的方向一:字符串处理 许多入门级到中级难度的问题会考察字符串操作能力。例如判断子串是否存在、统计字符频率或是执行某种转换逻辑等。以下是 Python 中实现的一个简单例子用于演示如何高效地比较两个字符串是否相匹配: ```python def are_strings_equal(s1, s2): if len(s1) != len(s2): return False for i in range(len(s1)): if s1[i] != s2[i]: return False return True ``` #### 方向二:数组与列表的操作 另一常见主题是对整数序列进行各种形式上的变换或者是查询最值等问题。下面给出一段 C++ 程序片段来展示快速寻找最大元素位置的方法: ```cpp #include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; vector<int> a(n); for(auto &x : a){ cin>>x; } auto max_it = max_element(a.begin(),a.end()); cout << distance(a.begin(),max_it)+1; // 输出索引加一作为答案 } ``` 由于具体描述缺失,在这里仅提供通用框架供参考。对于确切解答还需要访问实际页面获取更多信息后再做进一步探讨[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值