51 nod1242 斐波那契数列的第N项

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a17865569022/article/details/79950972
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
斐波那契数列的定义如下:

F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
Input示例
11
Output示例
89

思路:n的范围过大,暴力超时
矩阵快速幂

https://blog.csdn.net/y990041769/article/details/22311889

#include<bits/stdc++.h>
#define INF 1000000009
using namespace std;
struct Mat
{
    long long a[2][2];
};
Mat mul(Mat A,Mat B)
{
    Mat temp;
    int i,j;
    memset(temp.a,0,sizeof(temp.a));
    for(i=0;i<2;i++)
    {
        for(j=0;j<2;j++)
        {
            for(int k=0;k<2;k++)
                temp.a[i][j]=(temp.a[i][j]+A.a[i][k]*B.a[k][j])%INF;
        }
    }
    return temp;
}
Mat del(Mat ans,long long n)
{
    Mat num={1,0,0,1};
    while(n)
    {
        if(n&1)
            num=mul(num,ans);
        ans=mul(ans,ans);
        n>>=1;
    }
//    for(int i=0;i<2;i++)
//    {
//        for(int j=0;j<2;j++)
//            cout<<num.a[i][j]<<" ";
//        cout<<endl;
//    }
    return num;
}
int main()
{
    long long n;
    cin>>n;
    Mat C={1,1,1,0};
    C=del(C,n);
    cout<<C.a[0][1]<<endl;
    return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页