BZOJ1185: [HNOI2007]最小矩形覆盖(洛谷P3187)

标签: BZOJ 旋转卡壳 洛谷 HNOI2007
31人阅读 评论(0) 收藏 举报
分类:

旋转卡壳

BZOJ题目传送门
洛谷题目传送门

旋转卡壳求最小面积外接矩形。

可以发现矩形的一条边一定和凸包的一条边重合。

那么我们枚举每一条边,计算出离这条边最远、最左、最右的三个点。这样就构造出了这条边的最小面积外接矩形,更新答案即可。

至于怎么计算。。。看代码吧!

代码:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 50005
#define F friend
#define eps 1e-8
#define sqr(x) ((x)*(x))
#define abs(x) ((x)>0?(x):-(x))
using namespace std;
typedef double DB;
struct P{
    DB x,y;
    F bool operator < (P a,P b){
        return abs(a.y-b.y)<eps?a.x<b.x:a.y<b.y;
    }
    F P operator * (P a,DB b){ return (P){a.x*b,a.y*b}; }
    F P operator + (P a,P b){ return (P){a.x+b.x,a.y+b.y}; }
    F P operator - (P a,P b){ return (P){a.x-b.x,a.y-b.y}; }
    F DB dis(P a,P b){ return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y)); }
    F DB cs(P a,P b,P c){
        return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
    }
    F DB dt(P a,P b,P c){
        return (b.x-a.x)*(c.x-a.x)+(b.y-a.y)*(c.y-a.y);
    }
}t[N],s[N],v[4];
int n,tp,f; DB S=1e50;
inline bool cmp(P a,P b){
    double f=cs(t[1],a,b);
    if (abs(f)>eps) return f>0;
    return dis(a,t[1])-dis(b,t[1])<eps;
}
inline void GR(){
    sort(t+1,t+n+1),s[tp=1]=t[1],sort(t+2,t+n+1,cmp);
    for (int i=2;i<=n;s[++tp]=t[i++])
        while (tp>1&&cs(s[tp-1],s[tp],t[i])<eps) tp--;
}
inline void RC(){
    int l=1,r=1,h=1; s[0]=s[tp];
    for (int i=0;i<tp;i++){
        DB L,R,H,d=dis(s[i],s[i+1]);
        while (cs(s[i],s[i+1],s[h])-cs(s[i],s[i+1],s[h+1])<eps)
            h=(h+1)%tp; H=abs(cs(s[i],s[i+1],s[h])/d);
        while (dt(s[i],s[i+1],s[r])-dt(s[i],s[i+1],s[r+1])<eps)
            r=(r+1)%tp; R=dt(s[i],s[i+1],s[r])/d;
        if (!i) l=r;
        while (dt(s[i],s[i+1],s[l+1])-dt(s[i],s[i+1],s[l])<eps)
            l=(l+1)%tp; L=dt(s[i],s[i+1],s[l])/d;
        if ((R-L)*H<S){
            S=(R-L)*H;
            v[0]=s[i]+(s[i+1]-s[i])*(R/d);
            v[1]=v[0]+(s[r]-v[0])*(H/dis(v[0],s[r]));
            v[2]=v[1]-(v[0]-s[i])*((R-L)/dis(v[0],s[i]));
            v[3]=v[2]-(v[1]-v[0]);
        }
    }
}
int main(){
    scanf("%d",&n);
    for (int i=1;i<=n;i++)
        scanf("%lf%lf",&t[i].x,&t[i].y);
    GR(),RC(),printf("%.5f\n",S+eps);
    for (int i=1;i<=3;i++)
        if (v[i]<v[f]) f=i;
    for (int j=0;j<4;j++,f=(f+1)%4)
        printf("%.5f %.5f\n",v[f].x+eps,v[f].y+eps);
    return 0;
}
查看评论

[BZOJ1185][HNOI2007]最小矩形覆盖(旋转卡壳)

是不是还有不到20天就要SDOI了?日哦。。。。。。
  • FromATP
  • FromATP
  • 2017-03-20 17:06:05
  • 355

1185: [HNOI2007]最小矩形覆盖

1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 1392  So...
  • CRZbulabula
  • CRZbulabula
  • 2016-12-29 21:18:04
  • 203

BZOJ 1185: [HNOI2007]最小矩形覆盖

做着做着卡住了。。。。。。 本来以为是三分的,结果发现错了。。。。。 这题不仅要枚举精度,还要枚举做法QAQ 或者说是我太弱了,根本没想到旋转卡壳。 第一次知道旋转卡壳还可以这么玩,左卡卡,右...
  • nlj1999
  • nlj1999
  • 2016-03-21 16:57:18
  • 297

BZOJ 1185 [HNOI2007]最小矩形覆盖 旋转卡壳

BZOJ 1185 [HNOI2007]最小矩形覆盖 旋转卡壳
  • wzq_QwQ
  • wzq_QwQ
  • 2015-09-09 18:23:43
  • 1556

bzoj1185[HNOI2007]最小矩形覆盖

啊啊啊啊啊啊啊啊手速不行啊打了好久啊好吧其实也想了好久 这道题真是神奇WA了好几次= =结果还是因为看错题 我们可以做个凸包,然后这个矩形上一定有点,而且不止一个,所以只有一个点的一定不是最优的,...
  • BPM136
  • BPM136
  • 2015-12-02 19:43:42
  • 308

BZOJ1185[HNOI2007] 最小矩形覆盖

原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1185 最小矩形覆盖 题目描述 给定一些点的坐标,要求求能够覆盖所有点...
  • ShadyPi
  • ShadyPi
  • 2018-04-17 22:50:04
  • 1

【HNOI2007】bzoj1185 最小矩形覆盖

旋转卡壳
  • sdfzyhx
  • sdfzyhx
  • 2017-04-14 09:09:31
  • 241

BZOJ1185 [HNOI2007]最小矩形覆盖

标签:计算几何-旋转卡壳 题目 题目传送门 题目描述 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点坐标 输入输出格式 输入格式: 第一行为一个...
  • qwerty1125
  • qwerty1125
  • 2018-02-10 15:40:26
  • 51

bzoj1185【HNOI2007】最小矩形覆盖

凸包+旋转卡壳
  • AaronGZK
  • AaronGZK
  • 2016-04-19 00:00:05
  • 2336

【BZOJ1185】最小矩形覆盖 计算几何 凸包 旋转卡壳

写完程序两小时,调对精度一小时hhh 首先不严格的直觉告诉我们所求矩形一定有一条边在凸包上,我们遍历凸包上的边,用类似旋转卡壳的方式得到凸包上的三个点,分别是在边上投影最靠前的点,在边上投影最靠后的点...
  • qq_34637390
  • qq_34637390
  • 2016-04-15 22:08:34
  • 402
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 5万+
    积分: 3567
    排名: 1万+
    博客专栏
    文章分类