RDD通过persist方法或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。
System.setProperty("hadoop.home.dir", "G:\\hadoop-common-2.2.0-bin")
val conf = new SparkConf().setAppName("WC").setMaster("local[4]")
val sc = new SparkContext(conf)
val value = sc.parallelize(Array("")).cache()
value.cache()
//value.persist()
//value.persist(StorageLevel.MEMORY_AND_DISK_SER_2)