BZOJ1007 HNOI2008 水平可见直线 计算几何

题意:给定N条直线,求由这N条直线组成的,满足上方没有直线交点的边界由哪些直线组成
题解:我这STL用的真是闷声做大死,多亏不卡常……显然所求的边界中的直线k肯定单调的,所以首先将直线按k升序(第一关键字),b降序(第二关键字)进行排序。然后枚举每一条直线,用单调栈s维护这个直线集,若堆顶元素s[0]能被次栈顶直线s[1]和当前直线覆盖l[i],则满足s[0]与l[i]的交点在s[1]与s[0]交点的左侧,按照这一规则不断弹栈,然后加入l[i]。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

const int MAXN=50000+2;
struct Line{
    int t;
    double k,b;
    Line(){}
    Line(double _k,double _b):k(_k),b(_b){}
}l[MAXN];
struct Point{
    double x,y;
};
int N;
vector<Line> s;

bool cmp1(Line x,Line y){ return x.k==y.k?x.b>y.b:x.k<y.k;}

bool cmp2(Line x,Line y){ return x.t<y.t;}

Point Calc(Line x,Line y){
    Point ans;
    ans.x=(y.b-x.b)/(x.k-y.k),ans.y=ans.x*x.k+x.b;
    return ans;
}

int main(){
    cin >> N;
    for(int i=1;i<=N;i++) cin >> l[i].k >> l[i].b,l[i].t=i;

    sort(l+1,l+N+1,cmp1),s.push_back(l[1]);
    for(int i=2;i<=N;i++){
        while(s.size()>1 && Calc(l[i],s[0]).x<=Calc(s[0],s[1]).x) s.erase(s.begin());
        s.insert(s.begin(),l[i]);
    }

    N=s.size(),sort(s.begin(),s.end(),cmp2);
    for(int i=0;i<N;i++) cout << s[i].t << " ";

    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/WDZRMPCBIT/p/6443514.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值