肥宅Sean

Never give up~

[深搜]24点--改进版本

回顾 之前写的版本[深搜回溯]24点,没有考虑到中间数值的可能性,是对数值进行深搜遍历,而不是对数值对进行深搜数值遍历,使得较为复杂的24点运算中有部分数据没办法得到解决。这次的改进将围绕着这个进行。 算法思路 当数组长度为1的时候输出,判断是否为24点,如果是24点,就输出对应的数学表达。 如...

2019-08-06 08:24:34

阅读数 21

评论数 0

超松弛迭代法求方法组的解(Python实现)

数值分析题目 求方程组 {5x1+2x2+x3=−12−x1+4x2+2x3=202x1+−3x2+10x3=2 \left\{ \begin{array}{c} 5x_1+2x_2 + x_3 = -12 \\ -x_1 + 4x_2+2x_3 = 20 \\ 2x_1+-3x_...

2019-05-19 22:21:21

阅读数 43

评论数 0

马科维茨的均值方差模型(MPT)粒子群优化--Python实现

MPT MPT, modern portfolio theory。现在资产配置理论。 理论很简单。 假设每个资产的收益率是一个随机变量xix_ixi​。既然是随机变量,当然就会有均值和标准差。 如果资产数量不是只有一个的话(一个的话,做什么资产配置),也就是存在有多个随机变量,随机变量之间当然就会...

2019-05-18 09:29:22

阅读数 311

评论数 0

FCM算法实现Python(简洁版)

FCM算法 全名为Fuzzy C-Means,是一种聚类算法。 Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong to two or more clusters. ...

2019-04-17 17:46:11

阅读数 494

评论数 0

PCA主成分分析以及Python实现(阅读笔记)

简述 PCA日常使用,但还没有研究过其理论,这让我很好奇。 理论部分 《机器学习》中是这样开始的: 对于正交属性空间的样本点,如何用一个超平面来对所有的样本点进行表达。 超平面和半空间是优化领域的两个重要概念 简单来说,矩阵方程W∗X+b=0W*X+b = 0W∗X+b=0表示的是超平面,W∗X...

2019-04-14 18:44:22

阅读数 164

评论数 0

DBSCAN算法理论和Python实现

DBSCAN算法 基于密度的聚类方法DBSCAN算法,是相当经典。 算法思路很简单。 简述算法思路: 选取密度较高的点作为核心点 通过一个核心点出发,把其领域的点都放入到广度优先搜索的队列中。 将所有找到的点归结为一个类。之后,再从新的没有被访问过的点中找其他的核心点开始,又继续进...

2019-04-06 09:45:04

阅读数 198

评论数 0

高斯混合模型GMM理论和Python实现

简述 高斯混合模型,就是说用多个高斯函数去描述不同的元素分布。 通过EM方法来迭代生成不同的高斯模型的各个参数。 具体的EM算法的理论网上很多,但推荐各位先看完这个算法思路之后,再去看理论推导就更加好了。 更新方法 μi′=∑j=1mηji∗xj∑j=1mηji\mu_i^{&...

2019-04-05 11:40:12

阅读数 219

评论数 0

KMeans++算法理论和实现

简述 在Kmeans当中,有两个限制 定义在凸欧式空间上,使得在非凸空间上的聚类效果一般,在非欧式空间上无法计算均值点。 病态初始化问题,由于初始化完全随机,会使得生成的点收到限制,最后聚类的结果不好 第一类问题的主流解决方案就是,转换距离度量的方式,这样能使得做到一定的扩展。但任...

2019-04-03 17:09:51

阅读数 145

评论数 0

【论文阅读】A social recommender system using item asymmetric correlation

Abstract 推荐系统在近几年极大突出的信息筛选技术之一,然而,有两个主要的问题: 数据稀疏:数据太稀疏了,没办法操作 冷开始:一开始数据不多(或者),推荐效果不好或无法进行 有一类系统,叫做社会推荐系统被提出,可以有效地解决数据稀疏度和冷开始的问题。 给定一个社会关系并不是在每一个推荐系...

2019-03-25 23:23:32

阅读数 73

评论数 0

LVQ模型Python实现

简述 LVQ模型是聚类的经典模型,跟Kmeans有点像。但是作为一个聚类,这个模型是一个有监督的模型。 算法流程 输入的数据集X, y,还有学习率(在0,1之间)η\etaη 初始,选k个点,作为原型向量 然后开始循环 在样本集中随机选个点。 找到在原型向量中离它最近的点 ...

2019-03-23 16:25:22

阅读数 115

评论数 1

【论文阅读和实现】On Spectral Clustering: Analysis and an algorithm【Python实现】

On Spectral Clustering: Analysis and an algorithm 这是一篇引用量很高(7k+)的paper。开篇的abstract就吸引人。 概括: 本文提出了一种简单的谱聚类算法,该算法易于实现而且表现的不错,并且基于矩阵摄动理论,我们可以分析算法并找出...

2019-03-21 17:41:22

阅读数 218

评论数 0

Spectral clustering 谱聚类讲解及实现

In multivariate statistics and the clustering of data, spectral clustering techniques make use of the spectrum(eigenvalues) of the similarity matrix ...

2019-03-19 20:51:13

阅读数 449

评论数 0

COP-kMeans限制性--kMeans变体算法研究

简述 最近发现一篇有趣的论文。关于限制性的kMeans. 主要思想是基于boosting principle的COP-kMeans。所以,我就先研究了下COP-kMeans。 COP-kMeans 是一种限制性聚类算法。限制性的含义很简单,就是需要考虑到有些节点在聚类前,我们就知道了这个两个...

2019-03-16 17:41:32

阅读数 173

评论数 2

无重复字符的最长子串【三种解法】--LeetCode

题目描述 给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。 输入: "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。 输入: "bbbb...

2019-03-13 10:29:32

阅读数 436

评论数 0

K-Means算法理论及Python实现

简述 K-means Algorithm(s) Assumes Euclidean space/distance 假设是在欧式空间下的。因为means本身是需要在欧式空间下才可以计算。但K-means有很多的推广版本,将欧式空间中所提到的Centroid转成Clustroid,是一种比较常...

2019-03-07 17:00:22

阅读数 133

评论数 0

FCM算法理论及其Python实现

FCM算法 全名为Fuzzy C-Means,是一种聚类算法。 Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong to two or more clusters. ...

2019-03-05 15:00:25

阅读数 773

评论数 2

Polynomial interpolation 多项式插值 --sklearn研究

This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1...

2019-02-14 12:08:06

阅读数 230

评论数 0

五种排序方式gif展示【python】

排序 简单排序 import numpy as np import matplotlib.pyplot as plt import os import shutil import imageio def plotAndSave(X, Y, path): plt.cla() p...

2019-02-09 13:24:10

阅读数 210

评论数 0

Boosted Trees简介【翻译+自己的理解】

原文 https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf 华盛顿大学的 Introduction to Boosted Trees. Tianqi Chen. 本文结合该论文和网上其他资料,在自己理解之后,书写下来~ 文章目...

2019-02-03 13:33:48

阅读数 285

评论数 0

领近点梯度下降法、交替方向乘子法、次梯度法使用实例(Python实现)

简述 凸优化会很详细地讲解这三个算法,这个学期刚好有这门课。 这里以期末的大作业的项目中的一个题目作为讲解。 题目 考虑线性测量b=Ax+e,其中b为50维的测量值,A为50*100维的测量矩阵,x为100维的未知稀疏向量且稀疏度为5,e为50维的测量噪声。从b和A中恢复x的一范数规范化最...

2018-12-24 18:43:17

阅读数 1343

评论数 0

提示
确定要删除当前文章?
取消 删除