肥宅Sean

Never give up~

【R语言】迫松分布估计--判断是否符合迫松分布

简述 一道概率论和数理统计的题。 在1秒钟区间内的观测数。迫松分布的期望数是多少?能与之匹配吗? n 观测 0 5267 1 4436 2 1800 3 534 4 111 5+ 21 ...

2019-01-05 15:59:16

阅读数 500

评论数 0

【笔记】大数定理证明

简述 复习一下概率论大数定理的证明。 证明大数定理,需要先证明切比雪夫(Chebyshev)不等式。 Chebyshev不等式证明 定理 设随机变量X具有数学期望E(x)=μE(x)=\muE(x)=μ,方差为D(x)=σ2D(x) =\sigma^2D(x)=σ2,则对任意正数ε\varepsi...

2018-12-27 15:07:15

阅读数 747

评论数 0

常微分方程数值求解【python】

简述 这里只考虑最为简单的一种常微分方程 dydx=f(x,y)\frac{dy}{dx} = f(x,y)dxdy​=f(x,y) 然后这里的实例都是以下面这个方程来做展示的。 dydx=y∗(1−y2)\frac{dy}{dx} = y*(1-y^2)dxdy​=y∗(1−y2) 初...

2018-11-27 20:36:05

阅读数 519

评论数 0

logistic回归

前言 阅读《统计学习方法》逻辑回归的笔记 文章目录前言逻辑回归模型logistic distribution曲线别名曲线特点二项逻辑回归模型模型提出的理论推理模型分布事件的几率的定义(odd)事件的对数几率的定义(log odd)最大似然法估计求解方法为推广 逻辑回归模型 logi...

2018-11-12 17:31:46

阅读数 67

评论数 0

离散问题的最大似然估计

简述 一般来说,会查到这个问题,相比都是遇到了更一般的问题。 数学课就是上课1+1=2,下课黎曼问题证明的感觉。 本文不会讲解最大似然法 只是给需要解决离散型的最大似然法问题人用的 解决办法 一般来说,离散型的最大似然估计,我们极大话的对象是什么? 这时就不是类似于连续型,会有一个连续型的变量...

2018-10-24 21:58:10

阅读数 1494

评论数 0

Tutte定理

图G有完美对集,等价于,对于图G去掉任意一个点集之后的,图的奇分支的个数小于等于点集的模 奇分支: 有奇数个点的分支

2018-07-16 22:07:40

阅读数 508

评论数 0

证明连通简单图是哈密顿图

定理 对于v阶无向简单图,如果对于图中任意两点的度数之和都大于等于顶点数,那么该图就是哈密顿图

2018-07-16 21:44:33

阅读数 686

评论数 0

n阶图定义

定义 υ = |V(G)|,ε = |E(G)|分别表示图 G 的顶点数和边数,|V(G)| = n称 为 n 阶图 所谓的阶数,就是点数

2018-07-16 21:42:09

阅读数 1807

评论数 0

Fleury算法找欧拉环游

算法思路 任意选择一个顶点v0v0v_0, 假设已经确定好了前面的路劲了。在剩下的边中选一个新的边 这个新的边需要跟它前面的那个点要相关联 除非没有点可以选,否则不能是剩余子图的割边。 一直到等这个步骤2完成为止。 得到的路径就是欧拉环路 证明(摘抄自老师课件) 定理4.2:若G是E...

2018-07-16 21:36:39

阅读数 612

评论数 0

可简单图化算法(Havel算法)

算法分析(推理过程) 首先,我们很容易通过握手定理(所以点的度数加起来是偶数)知道,对应的度序列是否可图化。 在确定了可图化之后。但是担心会出现不可简单图化的情况。 我们只需要对于这种可能进行讨论就好了。 在可图化,但是不可简单图化的这种图中,就是因为会出现一些点上,一定会出现环(或者重边)的...

2018-07-14 23:32:00

阅读数 1074

评论数 0

Python分式计算

简述 用python来进行分式计算,降低了数学工作者的压力。 方法 使用sympy库。(在这个库中的运算都是分式的) 下面文章内容就是用sympy来进行分式计算https://blog.csdn.net/a19990412/article/details/81035066 使用python...

2018-07-13 17:39:06

阅读数 541

评论数 0

柯特斯系数计算

柯特斯系数理论知识在下面的这个链接中(也是我的blog) 牛顿-柯特斯公式 代码 用上面的blog的公式生成对应的柯特斯系数,运用代码如下: from sympy import * def C(n=int(), k=int()): if (n - k) % 2 == 0...

2018-07-13 17:26:03

阅读数 710

评论数 0

牛顿-柯特斯公式

理论 积分区间[a,b][a,b][a,b],划分为n等份。 步长为 h=b−anh=b−anh=\frac{b- a}{n} 等距节点:xk=a+khxk=a+khx_k = a + kh In=(b−a)∑k=0nC(n)kf(xk)In=(b−a)∑k=0nCk(n)f(xk)I_n...

2018-07-13 16:57:07

阅读数 1004

评论数 0

信息论中平稳概念--离散平稳信源

定义 信源X具有有限符号集 信源X具有有限符号集合 信源产生随机序列 xii=..,1,2,...xii=..,1,2,...{x_i} i = .., 1, 2 ,... 对所有i,j,hi,j,hi,j,h,都有, p(xi1=aj1...xiN=ajN)=p(xi1+h=aj1......

2018-07-11 17:00:53

阅读数 879

评论数 0

正交多项式族(勒让德多项式跟切比雪夫多项式)理论

简述 这里显示两种,分别是,勒让德多项式跟切比雪夫多项式 勒让德多项式 区间是 x∈[−1,1]x∈[−1,1]x\in[-1, 1],权函数为ρ(x)≡1ρ(x)≡1\rho(x)\equiv1 P0(x)=1P0(x)=1P_0(x) = 1 Pn(x)=12nn!dndxn(x2−...

2018-07-09 23:34:00

阅读数 2530

评论数 0

差分形式的牛顿插值公式(理论)

理论 Pn(x0+t∗h)=f0+tΔf+...+t∗(t−1)...(t−n−1)n!ΔnfPn(x0+t∗h)=f0+tΔf+...+t∗(t−1)...(t−n−1)n!ΔnfP_n(x_0 + t*h) = f_0 + t \Delta f + ...+ \frac{t*(t-1).....

2018-07-08 19:50:35

阅读数 821

评论数 0

牛顿插值多项式(python实现)

理论知识 牛顿插值多项式(理论知识) 目标函数 f(x)=11+x2f(x)=11+x2f(x) = \frac{1}{1+x^2} 插值点为[-10, 10]上的整数点。 图片 代码实现 import sympy import numpy as np from mat...

2018-07-08 19:18:53

阅读数 1543

评论数 0

牛顿插值多项式

简述 牛顿插值多项式的思想很有趣。 就是先保证第一个是正确的。即, P0(x0)=f(x0)P0(x0)=f(x0)P_0(x_0) = f(x_0) 然后,既然我们选取了后续的节点,那么,我只要需要保证在前面的这个情况不变的条件下,再实现将下一个点上的插值也满足就好了。 这点有点想玩魔方...

2018-07-08 18:58:18

阅读数 981

评论数 0

均差定义及性质(python实现)

简述 k阶均差 f[x0,x1,...,xk]=f[x0,x1,...,xk−2,xk]−f[x0,x1,...,xk−1]xk−xk−1f[x0,x1,...,xk]=f[x0,x1,...,xk−2,xk]−f[x0,x1,...,xk−1]xk−xk−1f[x_0, x_1,..., x...

2018-07-08 18:44:33

阅读数 1011

评论数 0

拉格朗日插值一个公式概括

简述 拉格朗日插值函数公式就是下面的L(x)L(x)L(x) : L(x)=∑i=0nyi∗li(x)L(x)=∑i=0nyi∗li(x)L(x) = \sum_{i=0}^{n}{ y_i * l_i(x) } li(x)=∏j!=m(x−xj)∏j!=m(xi−xj)li(x)=∏j!=...

2018-07-08 18:26:26

阅读数 851

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭