大模型风电功率预测:短期,超短期,中长期的完整实现与代码详解

1. 引言

风电功率预测对于电网调度、电力市场交易和可再生能源消纳至关重要。本文将全面介绍基于深度学习大模型的风电功率预测方法,涵盖超短期(15分钟-1小时)、短期(1-6小时)和中长期(1天-1周)三种时间尺度,并提供完整的开源代码实现。

2. 数据准备与特征工程

2.1 数据收集与加载

风电功率预测通常需要以下数据:

  • 历史功率数据

  • 气象数据(风速、风向、温度、气压等)

  • 风机特性数据(轮毂高度、风机类型等)

  • 地形数据(粗糙度、障碍物等)

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler

def load_wind_data(file_path):
    """
    加载风电数据集
    假设数据包含列:timestamp, power, wind_speed, wind_direction, temperature, pressure
    """
    data = pd.read_csv(file_path)
    data['ti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非著名架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值