1. 引言
风电功率预测对于电网调度、电力市场交易和可再生能源消纳至关重要。本文将全面介绍基于深度学习大模型的风电功率预测方法,涵盖超短期(15分钟-1小时)、短期(1-6小时)和中长期(1天-1周)三种时间尺度,并提供完整的开源代码实现。
2. 数据准备与特征工程
2.1 数据收集与加载
风电功率预测通常需要以下数据:
-
历史功率数据
-
气象数据(风速、风向、温度、气压等)
-
风机特性数据(轮毂高度、风机类型等)
-
地形数据(粗糙度、障碍物等)
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
def load_wind_data(file_path):
"""
加载风电数据集
假设数据包含列:timestamp, power, wind_speed, wind_direction, temperature, pressure
"""
data = pd.read_csv(file_path)
data['ti